ANNALES

Complete differentials of higher order in linear field modules

by Jan Kubarski (Łódź)

Abstract

Complete differentials of higher order in linear field modules are defined. A certain necessary condition for the existence of a complete differential of higher order is given. It is proved that this condition holds in a broad class of linear field modules, which contains differential modules and modules of vector fields on differential spaces of class \mathscr{D}_{0}. Jet-field modules of a linear field module are constructed. The exactness of the sequence of jet-modules is examined. A one-to-one correspondence between complete differentials of higher order and splittings of jet-module sequences is established. An example of a differential space of class $\%_{0}$ is given in which 1° the module of vector fields over that space in every neighbourhood of a certain point does not possess any vector basis, i.e. it is not differential, 2° a covariant derivative, i.e. a complete differential of the first order, exists in the module of vector fields.

Introduction. We consider a manifold M and a vector bundle ξ over M and we denote (as usual) by $J^{k}(\xi)$ the vector bundle of holonomic k-order jets of local sections of ξ. The exact sequence of vector bundles

$$
0 \rightarrow L_{s}^{k}(T M, \xi) \rightarrow J^{k}(\xi) \rightarrow J^{k-1}(\xi) \rightarrow 0
$$

called the sequence of jet-bunales is well known from the works by R. Palais ([6]), N. V. Que ([9]), D. Spencer ([13], [14]) and others. A differential operator of order k, corresponding to a splitting of the sequence, is termed by Palais a complete differential of order k.in a bundle ξ. In the case $k=1$ it is simply a covariant derivative.

In the present work we consider an arbitrary differential space (M, \mathscr{C}) ([5], [10]) instead of a manifold M and an arbitrary linear field module \mathscr{W} instead of the module of sections of a vector bundle ξ. Differential spaces have been examined in the works by R. Sikorski ([11], [12]), W. Waliszewski ([18], [19]) as well as in the works by P. Walczak ([15]-[17]), K. Cegiełka ([2], [3]), M. Pustelnik ([8]) and others. Linear field modules defined on differential spaces were introduced by R. Sikorski ([11]).

In the present work we shall construct a linear field module $J^{\boldsymbol{k}}(\mathscr{W})^{-}$and an exact sequence of jet-modules analogous to the sequence of jet-bundles
and we shall prove the equivalence between the definition of a complete differential as a certain differential operator of order k and as a splitting of the jet-module sequence. The construction of the module $J^{k}(\mathscr{W})$ will be possible under certain assumptions about the module \mathscr{W}; the exactness of the jet-module sequence will occur in certain conditions. These assumptions and conditions will be examined more precisely for a class of pseudodifferential modules, which contains differential modules ([11], [12]) and modules of vector fields on a differential space of the class \mathscr{D}_{0} ([16], [17]). K. Cegiełka in [2] showed that if a linear field module \mathscr{W} on a differential space $(M, 6)$ is differential and if it is possible to subordinate a smooth partition of unity to every open covering of the space $\left(M, \tau_{ধ}\right)$, then there exists in \mathscr{W} a scalar product, and so a covariant derivative also exists. It turns out that the existence of a scalar product does not imply the existence of a local basis in the module under consideration. An adequate example will be given at the end of section 3 .

1. Preliminaries. Differential spaces discussed in this paper as well as the notions of a tangent vector, tangent space, smooth mapping, tangent mapping, smooth vector field and the denotations $\tau_{\mathscr{C}}$ and \mathscr{C}_{A} have been adopted from the works by R. Sikorski [10], [12]. A $\mathscr{6}$-module of smooth vector fields on a differential space (M, \mathscr{C}) will be denoted by $\mathscr{X}(M, \mathscr{C})$ and the vector subspace of the tangent space $(M, \mathscr{C})_{p}, p \in M$, consisting of these vectors which are values of a smooth vector field will be denoted by $(M, \mathscr{C})_{p}^{\prime}$.

In a differential space (M, \mathscr{C}) whose topology is paracompact and locally compact, for any open covering there exists a smooth partition of unity subordinated to this covering; this fact has been proved by K. Cegiełka ([2]), M. Pustelnik in [8] proved that the assumption of local compactness may be replaced by \mathscr{C}-normality. It is easy to show that the assumptions of \mathscr{C}-normality is weaker than that of local compactness (assuming paracompactness) and equivalent to the existence of a smooth partition of unity subordinate to an arbitrary open covering.
1.1. Differential spaces of class \mathscr{D}_{0}. The existence and specification of the widest class of differential spaces in which the theorem on a diffeomorphism holds was a problem raised by Waliszewski and solved by Walczak in his paper [16]. Paper [17] was devoted to the investigation of that class.

Theorem 1.1.1. If (M, \mathscr{C}) is a differential space of class \mathscr{D}_{0}, then the set M^{\prime} of all points $p \in M$ for which

$$
(M, \mathscr{C})_{p}=(M, \mathscr{C})_{p}^{\prime}
$$

is open and dense in topology τ_{q}.
Proof. The openness of M^{\prime} is evident from the definition of this set. For
a non-negative integer n, let M_{n} be the set of all points $p \in M$ for which $\operatorname{dim}(M, \mathscr{C})_{p}=n$. It is easy to see that

$$
M^{\prime}=\bigcup_{n} \text { Int } M_{n}
$$

To prove that $\overline{M^{\prime}}=M$ we shall show that every point $p \in M$ has a neighbourhood $U \in \tau_{\mathscr{C}}$ such that

$$
\begin{equation*}
U \subset \overline{M^{\prime} \cap U} \tag{1.1.1}
\end{equation*}
$$

We take a set U covering p such that $\operatorname{dim}(M, \mathscr{C})_{q} \leqslant \operatorname{dim}(M, \mathscr{C})_{p}$ for $q \in U$. Obviously, if $n=\operatorname{dim}(M, \mathscr{C})_{p}$, then

$$
M^{\prime} \cap U=\bigcup_{k=0}^{n}\left(\left(\operatorname{Int} M_{k}\right) \cap U\right)=\bigcup_{k=0}^{n} \operatorname{Int}\left(M_{k} \cap U\right) .
$$

Let $A_{k}=\left(M_{k} \cap U\right) \backslash \operatorname{Int}\left(M_{k} \cap U\right), k=0,1, \ldots, n$. Since

$$
U \backslash\left(M_{+}^{\prime} \cap U\right)=\bigcup_{k=0}^{n^{* \prime}} A_{k},
$$

to show inclusion (1.1.1) it suffices to prove the equality

$$
\begin{equation*}
\operatorname{Int}\left(\bigcup_{k=0}^{r} A_{k}\right)=\emptyset, \quad r=0,1, \ldots, n . \tag{1.1.2}
\end{equation*}
$$

We apply induction on r. Since $M_{0} \cap U$ is open, equality (1.1.2) is satisfied for $r=0$. Assume that (1.1.2) is satisfied for an integer $r<n$. From the openness of the set $U \cap\left(M_{0} \cup \ldots \cup M_{r}\right)$ and the equality $\overline{A_{r+1}} \cap$ $\cap\left(M_{0} \cup \ldots \cup M_{r}\right) \cap U=\varnothing$ results

$$
\operatorname{Int}\left(\bigcup_{k=0}^{r+1} A_{k}\right)=\left(\operatorname{Int} \bigcup_{k=0}^{r} A_{k}\right) \cup \operatorname{Int} A_{r+1}=\emptyset . \quad \text { q.e.d. }
$$

The above theorem states that, in general, there are "many" vector fields in a differential space of class \mathscr{D}_{0}.

1.2. Examples of differential spaces.

1.2.1. Let M and N be manifolds of class C^{∞} and let $f: M \rightarrow N$; denote by $\mathscr{T}(M)$ and $\mathscr{T}(N)$ the rings of smooth functions on M and N; then the differential spaces $\left(f[M], \mathscr{T}(N)_{f[M]}\right)$ and $\left(f^{-1}[\{a\}], \mathscr{T}(M)_{f^{-1}}{ }_{[\{a\}]}\right)$, where $a \in N$ are not in general submanifolds.
1.2.2. The differential space $(M \times N, \mathscr{T}(M) \times \mathscr{T}(N))([13])$ is not a manifold if M and N are manifolds with a boundary.
1.2.3. Let $N_{s} N^{\prime}$ be submanifolds of M. The differential spaces $\left(N \cap N^{\prime}, \mathscr{T}(M)_{N \cap N^{\prime}}\right)$ and $\left(N \cup N^{\prime}, \mathscr{T}(M)_{N \cup N^{\prime}}\right)$ need not be submanifolds.
1.2.4. On a manifold M, an arbitrary collection of vector fields
X_{1}, \ldots, X_{k} defines several subspaces of the space $(\boldsymbol{M}, \mathscr{T}(M))$ of the form $\left(A, \mathscr{T}(M)_{A}\right)$, where, for example,
(a) $A=\left\{p \in M ; X_{1}(p)=\ldots=X_{k}(p)=0\right\}$,
(b) $A=\left\{p \in M\right.$; the vectors $X_{1}(p), \ldots, X_{k}(p)$ are lineary independent $\}$.
1.2.5. Let K be a solid in \boldsymbol{R}^{n}. A differential space $\left(K, C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\mathbf{K}}\right)$ and the k-dimensional skeletons of this solid with the differential structure induced from \boldsymbol{R}^{n} need not be manifolds. However, the solid may be a union (in the sense of example 3) of manifolds with a boundary.
1.2.6. Let (M, g) be a Riemannian manifold. Let us fix point $p \in M$ and denote by $C(p)$ the set of vectors $v \in M_{p}$ for which the differential $\left(d \operatorname{Exp}_{p}\right)_{v}$ is not an isomorphism. The corresponding differential subspaces $C(p)$ and $\operatorname{Exp}_{p}[C(p)]$ of the spaces M_{p} and M need not be submanifolds.
1.2.7. We define a structure \mathscr{C} on the set R of real numbers by the formula

$$
\mathscr{C}=\left(S_{C} C_{0}\right)_{R}, \quad \text { where } C_{0}=\{R \ni t \mapsto|t-s| \in R ; s \in R\} .
$$

Then $\operatorname{dim}(R, C)_{t}=2$ and $\operatorname{dim}(R, C)_{t}^{\prime}=0$ for any point $t \in R$.
The spaces in examples 1-6 are obviously of class \mathscr{D}_{0}, while in the last example the space (R, \mathscr{C}) is not of class \mathscr{D}_{0}, according to Theorem 1.1.1.

1.3. Linear field modules.

Definition 1.3.1. A linear field module is a triple $\mathscr{W}=((M, \mathscr{C}), \boldsymbol{\Phi}, \mathscr{W})$, where (M, \mathscr{C}) is a differential space, Φ is a function assigning vector spaces $\Phi(p)$ to points $p \in M$ and \mathscr{W} is a certain \mathscr{C}-module of linear Φ-fields satisfying the condition:

If W is a linear Φ-field such that for any point $p \in M$ there exist a neighbourhood $U \in \tau_{\mathscr{\%}}$ of this point and a field $V \in \mathscr{W}$ such that $W|U=V| U$, then $W \in \mathscr{W}$.

A module \mathscr{W} satisfying the last condition is said to be closed with respect to localization.

We shall denote by $\Phi_{\boldsymbol{w}}(p)$ the vector space consisting of vectors $v \in \Phi(p)$ which are the values of fields from the module \mathscr{W}.

Suppose that with every point $p \in M$ there is associated a linear mapping $L(p): \Phi_{\psi}(p) \rightarrow \Psi_{\psi}(p)$ satisfying the condition

$$
L(W)=(M \ni p \mapsto L(p)(W(p))) \in \mathscr{V} \quad \text { for } W \in \mathscr{W} ;
$$

then L is called a homomorphism of the linear field module $((M, \mathscr{C}), \Phi, \mathscr{W})$ into the linear field module $((M, \mathscr{C}), \Psi, \mathscr{V})$. Then $L: \mathscr{W} \rightarrow \mathscr{V}$ is a homomorphism of \mathscr{C}-modules.

A homomorphism of \mathscr{C}-modules $L: \mathscr{W} \rightarrow \mathscr{V}$ induces a homomorphism of linear field modules if and only if it satisfies the following condition:
if $W \in \mathscr{W}$ and $W(p)=0$, then $L(W)(p)=0$;
if \mathscr{V} and \mathscr{W} are modules of Φ and θ-linear fields on a differential
space (M, \mathscr{C}), then we denote by $L_{s}^{k}(\mathscr{V}, \mathscr{W})$ the module of all linear Ψ-fields L, where $\Psi(p)=L_{s}^{k}\left(\Phi_{\mathscr{V}}(p) ; \theta_{\mathscr{W}}(p)\right), p \in M$, such that $L\left(V_{1}, \ldots, V_{k}\right) \in \mathscr{W}$ for $V_{1}, \ldots, V_{k} \in \mathscr{V}$. The module $L(\mathscr{V}, \mathscr{C})$ will be denoted by \mathscr{V}^{*}.

An example of a differential space (M, \mathscr{C}), a linear field module \mathscr{W} and a \mathscr{C}-linear mapping from $\mathscr{X}(M, \mathscr{C})$ into \mathscr{W} which is not a linear Ψ-field will be given at the end of section 3. However, if every vector field $V \in \mathscr{X}(M, \mathscr{C})$ equal 0 at p is of the form $V=\sum_{i=1}^{n} f^{i} W_{i}$ for some functions $f^{i} \in \mathscr{C}$ such that $f^{i}(p)=0$ and fields $W_{i} \in \mathscr{X}(M, \mathscr{C}), i=1, \ldots, n$, then every \mathscr{C}-multilinear map-
ping from the module $\mathscr{X}(M, \mathscr{C})$ ping from the module $\mathscr{X}(M, \mathscr{C})$ into \mathscr{W} is a linear Ψ-field.

1.4. Pseudo-differential modules.

Definition 1.4.1. A linear field module $((M, \mathscr{C}), \Phi, \mathscr{W})$ is called a pseudo-differential module if for any point $q \in M$ there exist a neighbourhood $U \in \tau_{\mathscr{C}}$ of this point and a differential module $\left(\left(U, \mathscr{C}_{U}\right), \Psi, \mathscr{V}\right)$ such that $\Phi(p) \subset \Psi(p)$ for $p \in U$ and
(1.4.1) if $V \in \mathscr{V}$ and $V(p) \in \Phi_{W}(p)$ for any point $p \in U$, then $V \in \mathscr{W}_{U}$.

Differential modules and modules of smooth vector fields on a differential space of class \mathscr{D}_{0} are examples of pseudo-differential modules. Basic properties of pseudo-differential modules are given underneath:

Theorem 1.4.1. If $((M, \mathscr{C}), \Phi, \mathscr{W})$ is a pseudo-differential module, then:
(1) $\Psi_{W^{*}}(p)=\left(\Phi_{\mathscr{W}}(p)\right)^{*}$, where $\Psi(p)=\left(\Phi_{\mathscr{W}}(p)\right)^{*}, p \in M$; i.e. for any linear mapping $\tau: \Phi_{\mathscr{W}}(p) \rightarrow R$ there exists a field $h \in \mathscr{W}^{*}$ such that $h(p)=\tau$;
(2) if W is a Φ_{W}-linear field such that for any field $h \in \mathscr{W}^{*}$ the function $h \circ W$ belongs to the ring \mathscr{C}, then $W \in \mathscr{W}$;
(3) this module is reflexive, i.e. the mapping $H_{W}: \mathscr{W}^{\rightarrow} \rightarrow \mathscr{W}^{* *}$ defined by the formula $H_{\mathscr{W}}(W)=\left(\mathscr{W}^{*} \ni h \mapsto h \circ W \in \mathscr{C}\right), W \in \mathscr{W}$, is a linear field module isomorphism.

Remark. Actually, it will be proved that the relations $1 \Rightarrow(2 \Leftrightarrow 3)$ hold for any linear field modules.
(a) $(1 \wedge 2) \Rightarrow 3$. It suffices to prove that ker $H_{\mathscr{W}}=0$ and im $H_{\mathscr{W}}=\mathscr{W}^{* *}$. If $H_{\mathscr{W}}(W)=0$ for a certain field $W \in \mathscr{W}$, then $h(p)(W(p))=0$ for every field $h \in \mathscr{W}^{*}$. From condition (1) follows the equality $W(p)=0$. Now consider a field $L \in \mathscr{W}^{* *}$. From assumption (1) it follows that for any point $p \in M$ there is exactly one element $v \in \Phi_{W}(p)$ such that $L(p)(\tau)=\tau(v)$ for $\tau \in \Psi_{W^{*}}(p)$. This defines a certain linear $\Phi_{\boldsymbol{w}}$-field W for which $h \circ W=(M \ni p \mapsto h(p)(W(p)))$ $=(M \ni p \mapsto L(p)(h(p)))=L(h) \in \mathscr{C}$ for every field $h \in \mathscr{W}^{*}$. From the assumption (2) it follows that $W \in \mathscr{W}$.
(b) $(1 \wedge 3) \Rightarrow 2$. If W is an arbitrary linear Φ_{W}-field such that $h \circ W \in \mathscr{C}$ for any field $h \in \mathscr{W}^{*}$, then $\left(\mathscr{W}^{*} \ni h \mapsto h \circ W \in \mathscr{C}\right) \in \mathscr{W}^{* *}$. Hence there exists exactly one field $W^{\prime} \in \mathscr{W}$ such that $h \circ W=h \circ W^{\prime}$ for any field $h \in \mathscr{W}^{*}$. In view of condition (1) we have the equality $W=W^{\prime}$.

Proof of the theorem. Obviously, it suffices to check that a pseudodifferential module fulfils conditions (1) and (2). Let us take a point $q \in M$, a neighbourhood $U \in \tau_{\mathscr{F}}$ of q and a differential module $\left(\left(U, \mathscr{C}_{U}\right), \theta, \mathscr{V}\right)$ such that $\Phi(p) \subset \theta(p)$ for $p \in U$ and condition (1.4.2) is fulfilled.
(1) Let $\tau: \Phi_{W}(q) \rightarrow R$ be an arbitrary linear mapping and let $\varrho: \theta_{\bullet}(q)$ $\rightarrow R$ be a certain linear extension of it. Let us take an arbitrary field $F \in \mathscr{V}^{*}$ such that $F(q)=\varrho$. Obviously, the field $F^{\prime}=F \mid \Phi_{*}$ defined by the formula $\left(F \mid \Phi_{\mathscr{W}}\right)(p)=F(p) \mid \Phi_{\mathscr{W}}(p), p \in U$, is an element of the module $\left(\mathscr{W}_{U}\right)^{*}$ and has the property: $F^{\prime}(q)=\tau$. Taking into account the \mathscr{C}^{6}-regularity of the space $\left(M, \tau_{8}\right)([14])$, we see that condition (1) is fulfilled.
(2) Let W be an arbitrary linear $\Phi_{\mathscr{W}}$-field such that $h \circ W \in \mathscr{C}$ for any field $h \in \mathscr{W}^{*}$. In particular, $F \circ(W \mid U)=F \mid \Phi_{W} \circ(W \mid U) \in \mathscr{C}$ for any field $F \in \mathscr{V}^{*}$. Therefore $W \mid U \in \mathscr{V}$, and further, from assumption (1.4.1), it follows that $W \mid U \in \mathscr{W}_{U}$. Hence $W \in \mathscr{W}$. q.e.d.

1.5. Examples of linear field modules.

1.5.1. Let ξ and η be vector bundles over manifolds M and N, respectively, and let $\alpha: \xi \rightarrow \eta$ be a morphism of vector bundles, i.e. a smooth mapping such that $\alpha_{p}=\alpha \mid \xi_{p}: \xi_{p} \rightarrow \eta_{f(p)}, p \in M$ is a linear mapping, where $f: M \rightarrow N$. Let \mathscr{W} be a submodule of the module $C^{\infty}(\xi)$ consisting of sections σ for which $\sigma(p) \in \operatorname{ker} \alpha_{p}, p \in M$, and \mathscr{V} a submodule of $C^{\infty}\left(f^{*} \eta\right)$ consisting of fields σ for which $\sigma(p) \in \alpha_{p}\left[\zeta_{p}\right], p \in M$. The linear field modules

$$
\left(M,\left(M \ni p \mapsto \operatorname{ker} \alpha_{p}\right), \mathscr{W}\right), \quad\left(M,\left(M \ni p \mapsto \operatorname{im} \alpha_{p}\right), \mathscr{V}\right)
$$

are not, in general, differential modules (i.e. $\bigcup_{p \in M} \operatorname{ker} \alpha_{p}$ and $\bigcup_{p \in M} \operatorname{im} \alpha_{p}$ generally are not subbundles of ξ and $f^{*} \eta$, respectively).
1.5.2. Let ξ and η be vector bundles over a manifold M and Φ a differential operator of order k from the bundle ξ into η. Following Spencer ([13], [14]), we denote by φ the corresponding morphism of the vector bundle $J^{k}(\xi)$ into η, by $P_{l}(\varphi)$ its l-th extension $P_{l}(\varphi): J^{k+1}(\xi) \rightarrow J^{l}(\eta)$ and by $\sigma_{l}(\varphi)$ the unique linear morphism $\sigma_{l}(\varphi): S^{k+l} T^{*} \otimes \xi \rightarrow S^{l} T^{*} \otimes \xi, l \geqslant 0$, such that the following diagram is commutative:

Let $g_{k+l}=\operatorname{ker} \sigma_{l}(\varphi) \subset S^{k+l} T^{*} \otimes \xi$ and $R_{k+l}=\operatorname{ker} P_{l}(\varphi) \subset J^{k+l}(\xi)$. Adequate linear field modules (constructed accordingly to the scheme from the former example) with values in g_{k+l} and R_{k+l}, respectively, are not differential, in general.
1.5.3. Let M be a manifold. An arbitrary collection of smooth vector fields X_{1}, \ldots, X_{k} defines a linear field module in which $\Phi(p), p \in M$, is the vector space spanned by the vectors $X_{1}(p), \ldots, X_{k}(p)$.
1.5.4. Let us consider a curve $f:(a, b) \rightarrow \boldsymbol{R}^{n}$ of class C^{∞} and at every. point $p \in(a, b)$ the osculating space of order k to f in the sense of E. Cartan ([1]), i.e. the plane in \boldsymbol{R}^{n} spanned by the points: $f(p), f(p)+f^{\prime}(p)$, $f(p)+f^{\prime \prime}(p), \ldots, f(p)+f^{(k)}(p)$. Let us produce a linear field module in which $\Phi(p), p \in(a, b)$, will be the osculating space of order k to the curve f and all mappings $V:(a, b) \rightarrow \boldsymbol{R}^{n}$ of class C^{∞}, such that $V(p) \in \Phi(p), p \in(a, b)$, will form a linear Φ-field module. The generated linear field module need not be differential. A generalization of the above definition of the osculating space to a curve in the case of a realization f of a manifold M in the space $\boldsymbol{R}^{n}, f: M \rightarrow \boldsymbol{R}^{n}$, was given by W. Pohl ([7]). Proceeding as above, we can again define a linear field module which, in general is not differential.
2. Ideals $I_{p}^{(k)}(M, \mathscr{C})$.

Definition 2.1. For an arbitrary differential space (M, \mathscr{C}) and a point $p \in M$ we define by.induction the sets $I_{p}^{(k)}(M, \mathscr{C}), k \in N$, in the following way:
(a) $I_{p}^{(1)}(M ; \mathscr{C})=I_{p}(M, \mathscr{C})$ equals the set of functions $\tilde{f} \in \mathscr{C}$ for which $f(p)$ $=0$;
(b) $f \in I_{p}^{(k+1)}(M, \mathscr{C})$ if and only if $f \in I_{p}^{(k)}(M, \mathscr{C})$ and for any collection of vector fields $X_{1}, \ldots, X_{k} \in \mathscr{X}\left(M, \mathscr{C}^{\prime}\right)$ the equality

$$
\left[\left(X_{1}, \ldots, X_{k}\right) f\right](p)=0
$$

holds.
Note that:
(2.1) The sets $I_{p}^{(k)}(M, \mathscr{C}), k \in N$, are ideals in the ring \mathscr{C},
(2.2) If $f \in I_{p}^{(k+1)}(M, \not \subset), \quad 1 \leqslant r \leqslant k, \quad X_{1}, \ldots, X_{r} \in \mathscr{X}\left(M, \mathscr{C}^{\prime}\right), \quad$ then $\left(X_{1}, \ldots, X_{r}\right) f \in I_{p}^{(k+1-r)}(M, \mathscr{C})$,
(2.3) $\left[\left(I_{p}^{(1)}(M, \mathscr{C})\right)^{k}\right]_{M} \subset I_{p}^{(k)}(M, \mathscr{C})$.

As a rule, inclusion (2.3) cannot be replaced by an equality.
Example 2.1. Let $A \subset R^{2}$ be the set of points (x, y) for which $x=0$ or $y=0$ and let $D=C^{\infty}\left(R^{2}\right)_{A}$. Obviously, the dimension of the space $(A, D)_{(0.0)}$ is equal 2 ; moreover, since every smooth vector field on (A, D) is equal 0 at the point $(0,0)$, the dimension of the space $(A, D)_{(0.0)}^{\prime}$ is equal 0 . Consequently $I_{p}^{(k)}(A, D)=I_{p}^{(1)}(A, D)$ for $k \geqslant 1$. There exists a function
$\alpha \in I_{p}^{(1)}(A, D)$ such that $\quad(d \alpha)_{(0,0)} \neq 0$; so $\alpha \notin\left(\left(I_{p}^{(1)}(A, D)\right)^{2}\right)_{A}$ and also $\alpha \notin\left(\left(I_{p}^{(1)}(A, D)\right)^{k}\right)_{A}$.

Theorem 2.1. For any differential space (M, \mathscr{C}), any point $p \in M$ and any positive integer k there exists exactly one linear mapping

$$
d_{p}^{(k)}: I_{p}^{(k)}(M, \mathscr{C}) \rightarrow L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, R\right)
$$

such that for vector fields $X_{1}, \ldots, X_{k} \in \mathscr{X}(M, \mathscr{C})$ and functions $f \in I_{p}^{(k)}(M, \mathscr{C})$ the equality

$$
\left(d_{p}^{(k)} f\right)\left(X_{1}(p), \ldots, X_{k}(p)\right)=\left[\left(X_{1}, \ldots, X_{k}\right) f\right](p)
$$

holds. Moreover, the sequence

$$
\begin{equation*}
0 \rightarrow I_{p}^{(k+1)}(M, \mathscr{C}) \leftrightharpoons I_{p}^{(k)}(M, \mathscr{C}) \xrightarrow{d_{p}^{(k)}} L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, R\right) \rightarrow 0 \tag{2.4}
\end{equation*}
$$

is exact if $\operatorname{dim}(M, \mathscr{C})_{p}^{\prime}<\infty$.
Proof. The existence of the mapping $d_{p}^{(k)}$, its uniqueness and linearity may be checked just as in the case when (M, \mathscr{C}) is a manifold ([6]). To prove the exactness of the sequence (2.4) it suffices to show the surjectivity of the mapping $d_{p}^{(k)}$ in the case when $\operatorname{dim}(M, \mathscr{C})_{p}^{\prime}>0$. Let $\alpha: \otimes^{k}\left((M, \mathscr{C})_{p}^{\prime}\right)^{*}$ $\rightarrow L^{k}\left((M, \mathscr{E})_{p}^{\prime}, R\right)$ be the natural linear isomorphism. Let us fix a basis v_{1}, \ldots, v_{n} of the space $(M, \mathscr{Q})_{p}^{\prime}$ and take arbitrary vector fields $X_{1}, \ldots, X_{k} \in \mathscr{X}(M, \mathscr{C})$ such that $X_{i}(p)=v_{i}, i=1, \ldots, n$. There exist functions $\beta_{1}, \ldots, \beta_{n} \in \mathscr{C}$ such that $\beta_{j}(p)=0$ and $X_{i}\left(\beta_{j}\right)=\delta_{i j}, i, j \leqslant n$ ([12]). An arbitrary element τ of the space $\otimes^{k}\left((M, \mathscr{C})_{p}^{\prime}\right)^{*}$ is of the form

$$
\tau=\sum_{i_{1}, \ldots, i_{k}=1} a_{i_{1}, \ldots, i_{k}} d_{p}^{(1)} \beta_{i_{1}} \otimes \ldots \otimes d_{p}^{(1)} \beta_{i_{k}}
$$

with uniquely determined numbers $a_{i_{1}, \ldots, i_{k}} \in R . \alpha(\tau)$ is a symmetric mapping if and only if the matrix

$$
\left[a_{i_{1}, \ldots, i_{k}} ; 1 \leqslant i_{1}, \ldots, i_{k} \leqslant n\right]
$$

is symmetric.
Let now $\alpha(\tau)$ be an arbitrary element of the space $L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, R\right)$. Let

$$
f=\sum_{\substack{\alpha_{1}+\ldots+\alpha_{n}=k \\ 0 \leqslant a_{1} \ldots \ldots, \alpha_{n} \leqslant k}} \frac{1}{\alpha_{1}!\cdot \ldots \cdot \alpha_{n}!} \beta_{1}^{\alpha_{1}} \cdot \ldots \cdot \beta_{n}^{\alpha_{n}} a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)},
$$

where the number $a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)}$ is equal $a_{i_{1} \ldots, i_{k}}$ for the sequence i_{1}, \ldots, i_{k} constructed in the following way: at the beginning the number 1 appears α_{1} times, then the number 2 is repeated α_{2} times etc., the number n occurs α_{n}
times. It is clear that for a sequence $\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}$ such that $\alpha_{1}^{\prime}+\ldots+\alpha_{n}^{\prime}=k$ and $0 \leqslant \alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime} \leqslant k$

$$
\begin{aligned}
& \quad\left(d_{p}^{(k)} f\right) \underbrace{\left(X_{1}(p), \ldots, X_{1}(p)\right.}_{\alpha_{1}^{\prime} \text { times }}, \ldots, \underbrace{\left.X_{n}(p), \ldots, X_{n}(p)\right)}_{\alpha_{n}^{\prime} \text { times }} \\
& =\left(d_{p}^{(k)} f\right)\left(X_{1}^{\alpha_{1}^{\prime}}(p), \ldots, X_{n}^{\alpha_{n}^{\prime}}(p)\right) \\
& =\sum_{\substack{\alpha_{1}+\ldots+\alpha_{n}=k \\
\alpha_{1}, \ldots, \alpha_{n} \geqslant 0}} \frac{1}{\alpha_{1}!\cdot \ldots \cdot \alpha_{n}!} a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)}\left(X_{1}^{\alpha_{1}^{\prime}}, \ldots, X_{n}^{\alpha_{n}^{\prime}}\right)\left(\beta_{1}^{\alpha_{1}}, \ldots, \beta_{n}^{\alpha_{n}}\right)(p) \\
& =\sum_{\substack{\alpha_{1}+\ldots+\alpha_{n}=k \\
\alpha_{1}, \ldots, \alpha_{n} \geqslant 0}} \frac{1}{\alpha_{1}!\cdot \ldots \cdot \alpha_{n}!} a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)} \alpha_{1}!\cdot \ldots \cdot \alpha_{n}!\delta_{\alpha_{1}}^{\alpha_{1}^{\prime}} \cdot \ldots \cdot \delta_{\alpha_{n}}^{\alpha_{n}^{\prime}} \\
& = \\
& a_{\left(\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right)}=\alpha(\tau) \underbrace{\left(X_{1}(p), \ldots, X_{1}(p)\right.}_{\alpha_{1}^{\prime} \text { times }}, \ldots, \underbrace{\left.X_{n}(p), \ldots, X_{n}(p)\right)}_{\alpha_{n}^{\prime} \text { times }}
\end{aligned}
$$

q.e.d.

There exists a differential space (M, \mathscr{C}) and a point $p \in M$ at which $\operatorname{dim}(M, \mathscr{C})_{p}=\infty$ and $\operatorname{dim}(M, \mathscr{C})_{p}^{\prime}<\infty$.

Example 2.2. Let (A, D) be a differential space from Example 2.1. Let us take $(M, \mathscr{C})=X_{m \in N}\left(A_{m}, D_{m}\right)$, where $\left(A_{m}, D_{m}\right)=(A, D), m=1,2, \ldots$, and a point $p \in M$ such that $\operatorname{pr}_{n}(p)=(0,0)$. It can be proved that $\operatorname{dim}(M, \mathscr{C})_{p}=\infty$ and $\operatorname{dim}(M, \mathscr{C})_{p}^{\prime}=0$.

Lemma 2.1. If functions f^{1}, \ldots, f^{n} belong to the ideal $I_{p}^{(k)}(M, \mathscr{C})$ and g_{1}, \ldots, g_{n} are arbitrary functions of class \mathscr{C}, then

$$
d_{p}^{(k)}\left(\sum_{i=1}^{n} f^{i} g_{i}\right)=\sum_{i=1}^{n}\left(d_{p}^{(k)} f^{i}\right) g_{i}(p)
$$

Proof. The proof will be inductive on k. By the linearity of $d_{p}^{(k)}$ it suffices to prove the equality for $n=1$. Let $f \in I_{p}^{(k)}(M, \mathscr{C})$ and $g \in \mathscr{C}$. When $k=1$ the proof is evident. Let $k>1$,

$$
\begin{aligned}
d_{p}^{(k)}(f \cdot g) & \left(X_{1}(p), \ldots, X_{k}(p)\right)=\left[\left(X_{1}, \ldots, X_{k}\right)(f \cdot g)\right](p) \\
& =\left[\left(X_{1}, \ldots, X_{k-1}\right)\left(X_{k}(f \cdot g)\right)\right](p) \\
& =\left[\left(X_{1}, \ldots, X_{k-1}\right)\left(\left(X_{k} f\right) g+f\left(X_{k} g\right)\right)\right](p) \\
& =\left[\left(X_{1}, \ldots, X_{k-1}\right)\left(\left(X_{k} f\right) g\right)\right](p)+\left[\left(X_{1}, \ldots, X_{k-1}\right)\left(f\left(X_{k} g\right)\right)\right](p) \\
& =d_{p}^{(k-1)}\left(\left(X_{k} f\right) g\right)\left(X_{1}(p), \ldots, X_{k-1}(p)\right)+0 \\
& =\left[d_{p}^{(k-1)}\left(X_{k} f\right) g(p)\right]\left(X_{1}(p), \ldots, X_{k-1}(p)\right) \\
& =d_{p}^{(k-1)}\left(X_{k} f\right)\left(X_{1}(p), \ldots, X_{k-1}(p)\right) \cdot g(p)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left(X_{1}, \ldots, X_{k-1}\right)\left(X_{k} f\right)\right](p) \cdot g(p) \\
& =\left[\left(X_{1}, \ldots, X_{k}\right) f\right](p) \cdot g(p) \\
& =\left[\left(d_{p}^{(k)} f\right) \cdot g(p)\right]\left(X_{1}(p), \ldots, X_{k}(p)\right) . \quad \text { q.e.d. }
\end{aligned}
$$

3. Modules of jets. An exact sequence of jet-modules.

3.1. Opening remarks. For an arbitrary linear field module \mathscr{w} $=((M, \mathscr{C}), \Phi, \mathscr{W})$ we shall look for the possibly weakest conditions under which a linear field module $J^{k}(\mathscr{W})$, called the module of jets of order k of the module \mathscr{W}, can be rationally defined.

The notion of jet appeared in Ch. Ehresmann's work [4]. In the same series of articles we can find also the notion of a holonomic extension of order k of a bundle ξ. In the case of linear bundles this notion was introduced in a way different but equivalent and more useful for us by R. Palais ([16]) in the course of presenting the theory of differential operators.

The definition of the jet field module $J^{k}(\mathcal{W})$ in the case of a linear field module is a generalization of this construction.
3.2. Definition of a complete differential of higher order in a linear field module. Examples.

Definition 3.2.1. A complete differential of order k in a linear Φ-field module \mathscr{W} over a differential space $(M, \mathscr{\&})$ is defined as an R-linear mapping

$$
D^{k}: \mathscr{W} \rightarrow L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W})
$$

satisfying the condition

$$
\begin{equation*}
\left(D^{k}(f \cdot W)\right)(p)=d_{p}^{(k)}(f-f(p)) \otimes W(p)+f(p)\left(D^{k} W\right)(p) \tag{3.2.1}
\end{equation*}
$$

for fields $W \in \mathscr{W}$, points $p \in M$ and functions $f \in \mathscr{E}$ such that

$$
f-f(p) \in I_{p}^{(k)}(M, \mathscr{q}) .
$$

For $k=1$ we have the ordinary definition of a covariant derivative. We shall further denote $\left(D^{k} W\right)(p)$ by $D_{p}^{k}(W)$.

Example 3.2.1. A fundamental example of a complete differential of order k is the mapping

$$
d^{k}: C^{\infty}\left(\boldsymbol{R}^{n}\right) \rightarrow L_{s}^{k}\left(\mathscr{X}\left(\boldsymbol{R}^{n}, C^{\infty}\left(\boldsymbol{R}^{n}\right)\right), C^{\gamma}\left(\boldsymbol{R}^{n}\right)\right)
$$

define by the formula

$$
\left(d^{k} f\right)\left(X_{1}, \ldots, X_{k}\right)(p)=\sum_{i_{1}, \ldots, i_{k}=1} X_{1}(p)\left(p r_{i_{1}}\right) \cdot \ldots \cdot X_{k}(p)\left(p r_{i_{k}}\right) f_{i_{1} \ldots i_{k}}(p)
$$

for X_{1}, \ldots, X_{k} smooth vector fields on \boldsymbol{R}^{n} and $p r_{j}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}, j=1, \ldots, n$, the natural projections.

Thus, in order to evaluate $\left(d^{k} f\right)\left(X_{1}, \ldots, X_{k}\right)(p)$, the vectors
$X_{2}(p), \ldots, X_{k}(p)$ should be extended to vector fields Y_{2}, \ldots, Y_{k}, constant with respect to the natural covariant derivative in the module $\mathscr{X}\left(\boldsymbol{R}^{n}, C^{\infty}\left(\boldsymbol{R}^{n}\right)\right)$ and the following quantity should be computed:

$$
\left(d^{k} f\right)\left(X_{1}, \ldots, X_{k}\right)(p)=X_{1}(p)\left[\left(Y_{2}, \ldots, Y_{k}\right) f\right] .
$$

Example 3.2.2. Let us consider a vector bundle ξ over a manifold M, a covariant derivative $\tilde{\bar{V}}$ in the tangent bundle $T M$ with vanishing curvature tensor and a covariant derivative ∇ in ξ such that, whenever \bar{X} and \bar{Y} are $\tilde{\nabla}$ constant fields defined on an open set $U \subset M$, the curvature tensor of \bar{V} satisfies

$$
R_{\bar{X}, \bar{Y}} \sigma=-\nabla_{[\bar{X}, \bar{Y}]} \sigma,
$$

σ being any section of ξ over U. For vector field X on the manifold M and a point $p \in M$ we denote by \bar{X}^{p} the $\tilde{\nabla}$-constant field defined in a certain neighbourhood of p such that $X(p)=\bar{X}^{p}(p)$. Let

$$
\left(D_{x_{1}, \ldots, x_{k}} \sigma\right)(p)=\left(\nabla_{\bar{x}_{1}^{p}}\left(\ldots\left(\nabla_{\bar{x}_{k}^{p}} \sigma\right) \ldots\right)\right)(p) .
$$

The operator D defined in this way is a complete differential of order k.
3.3. The modules $Z_{p}^{(k)}(\mathscr{W})$ and $Z_{p}^{k}(\mathscr{W})$. Let us consider a certain vector bundle ξ over a manifold M. R. Palais [6] has defined, for an arbitrary point $p \in M$ and an integer $k \geqslant 0$, a submodule $Z_{p}^{k}(\xi)$ of $C^{\infty}(\xi)$ (the module of global sections of ξ) to be equal $I_{p}^{k}(M) C^{\infty}(\xi)$. It corresponds to these global sections whose holonomic k-jet at p (in the terminology of Ehresmann) is equal to 0 . If D^{k} is a complete differential of order k in the module $C^{x}(\xi)$, then $Z_{p}^{k}(\xi)$ consists of these sections $\sigma \in Z_{p}^{k-1}(\xi)$ for which $D_{p}^{k}(\sigma)=0$.

Definition 3.3.1. Assume, for an arbitrary linear field module \mathscr{W} $=((M, \mathscr{C}), \Phi, \mathscr{W})$ and a point $p \in M$, that
(a) $Z_{p}^{(k)}(\mathscr{W})=I_{p}^{(k+1)}(M, \mathscr{C}) \mathscr{W}, k=0,1,2, \ldots$
(b) $Z_{p}^{0}(\mathscr{W})=Z_{p}^{(0)}(\mathscr{W})$ and $Z_{p}^{k}(\mathscr{W}), k=1,2, \ldots$, is equal to the submodule of \mathscr{W} containing these and only these fields $W \in Z_{p}^{(k-1)}(\mathscr{W})$ which can be written in the form $W=\sum_{i=1}^{n} f^{i} W_{i}, f^{1}, \ldots, f^{n} \in I_{p}^{(k)}(M, \not \subset)$, $W_{1}, \ldots, W_{n} \in \mathscr{W}$, such that

$$
\sum_{i=1}^{n}\left(d_{p}^{(k)} f^{i}\right) \otimes W_{i}(p)=0 .
$$

The modules $Z_{p}^{(k)}(\mathscr{W})$ and $Z_{p}^{k}(\mathscr{W})$ are closed with respect to localization. It is easy to see that if D^{k} is a complete differential of order k in a linear field module $((M, \mathscr{C}), \Phi, \mathscr{W})$, then $Z_{p}^{k}(\mathscr{W})$ contains those and only those fields $W \in Z_{p}^{(k-1)}(\mathscr{W})$ for which $D_{p}^{k}(W)=0$. For an arbitrary open set $U \in \tau_{\mathscr{y}}$ the following equalities hold:

$$
\begin{equation*}
\left(Z_{p}^{(k)}(\mathscr{W})\right)_{U}=Z_{p}^{(k)}\left(\mathscr{W}_{U}\right), \quad\left(Z_{p}^{k}(\mathscr{W})\right)_{U}=Z_{p}^{k}\left(\mathscr{W}_{U}\right) . \tag{3.3.1}
\end{equation*}
$$

The inclusion

$$
\begin{equation*}
Z_{p}^{(k)}(\mathscr{W}) \subset Z_{p}^{k}(\mathscr{W}), \quad k \in N, \tag{3.3.2}
\end{equation*}
$$

cannot, in general, be replaced by an equality.
Example 3.3.1. Consider a differential space ($\boldsymbol{R}, \boldsymbol{C}^{\infty}(\boldsymbol{R})$), a positive integer r and an assignement Φ defined by the formula:

$$
\Phi(p)= \begin{cases}\boldsymbol{R}^{\boldsymbol{r}}, & p \neq 0, \\ \boldsymbol{R}^{-1} \times\{0\}, & p=0 .\end{cases}
$$

Let us include into the module \mathscr{W} those and only those fields ($f^{1}, \ldots, f^{\prime}$) for which $f^{1}, \ldots, f^{r-1} \in C^{\infty}(\boldsymbol{R})$ and $f^{r} \in I_{0}(\boldsymbol{R})$. Clearly,

$$
\begin{aligned}
Z_{0}^{(k)}(\mathscr{W}) & =\left\{\left(f^{1}, \ldots, f^{r}\right) ; f^{1}, \ldots, f^{r-1} \in I_{0}^{k+1}, f^{r} \in I_{0}^{k+2}\right\} \\
& \nsubseteq\left\{\left(f^{1}, \ldots, f^{r}\right): f^{1}, \ldots, f^{r} \in I_{0}^{k+1}\right\}=Z_{0}^{k}(\mathscr{W}) .
\end{aligned}
$$

If the manifold M has a positive dimensions, then for any natural number k we have

$$
Z_{p}^{k}\left(C^{\infty}(\xi)\right) \mp Z_{p}^{(k-1)}\left(C^{\infty}(\xi)\right)=Z_{p}^{k-1}\left(C^{\infty}(\xi)\right) .
$$

In general, the equality on the right does not hold in pseudo-differential modules (Example 3.3.1) but it holds in differential modules.

Theorem 3.3.1. If a linear field module $((M, \varnothing), \Phi, W)$ is a differential module, then $Z_{p}^{(k)}(\mathscr{W})=Z_{p}^{k}(\mathscr{W}), k \in N, p \in M$.

Proof. Every field $W \in Z_{p}^{k}(\mathscr{W})$ is of the form $\sum_{i=1}^{n} f^{i} \cdot W_{i}$ with functions $f^{i} \in I_{p}^{(k)}(M, \mathscr{\&}), i=1, \ldots, n$, satisfying the condition $\sum_{i=1}^{n} d_{p}^{(k)} f^{i} \otimes W_{i}(p)=0$. There exist a neighbourhood U of p and fields $V_{1}, \ldots, V_{r} \in \mathscr{W}$ such that the fields $V_{1}\left|U, \ldots, V_{r}\right| U$ are a vector basis for the module \mathscr{W}_{U} and $W_{i} \mid U$ $=\left(\sum_{j=1}^{r} \lambda_{i}^{j} V_{j}\right) \mid U, i=1, \ldots, n$, for certain functions $\lambda_{i}^{j} \in \mathscr{C}$. Thus by Lemma 2.1

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} d_{p}^{(k)} f^{i} \otimes W_{i}(p)=\sum_{i=1}^{n} d_{p}^{(k)} f^{i} \otimes \sum_{j=1}^{r} \lambda_{i}^{j}(p) \cdot V_{j}(p) \\
& =\sum_{j=1}^{r}\left(\sum_{i=1}^{n}\left(d_{p}^{(k)} f^{i}\right) \lambda_{i}^{j}(p)\right) \otimes V_{j}(p)=\sum_{j=1}^{r} d_{p}^{(k)}\left(\sum_{i=1}^{n} f^{i} \lambda_{i}^{j}\right) \otimes V_{j}(p) .
\end{aligned}
$$

From the fact that the vectors $V_{1}(p), \ldots, V_{r}(p)$ are linearly independent we obtain the equalities $d_{p}^{(k)}\left(\sum_{i=1}^{n} f^{i} \lambda_{i}^{j}\right)=0, j=1, \ldots, r$, and from Theorem 2.1
we get the relation $\Psi^{j}=\sum_{i=1}^{n} f^{i} \lambda_{i}^{j} \in I_{p}^{(k+1)}(M, \mathscr{C}), j=1, \ldots, r$. Thus $W \mid U=$ $\left(\sum_{i=1}^{n} f^{i} W_{i}\right)\left|U=\left(\sum_{j=1}^{r} \Psi^{j} V_{j}\right)\right| U$, which means that $W \in Z_{p}^{(k)}(\mathscr{W})$. q.e.d.

Theorem 3.3.2. If a differential space (M, \mathscr{C}) is of class \mathscr{D}_{0} and if we have $(M, \mathscr{C})_{p}=(M, \mathscr{C})_{p}^{\prime}$ at a point $p \in M$, then $Z_{p}^{(k)}(\mathscr{X}(M, \mathscr{C}))$ $=Z_{p}^{k}(\mathscr{X}(M, \mathscr{C})), k \in N$. Consequently the set of points $p \in M$ for which the two modules are equal is dense in $\tau_{\mathscr{8}}$ and covers the set M^{\prime}.

Proof. From Theorem 1.1.1 follows the existence of a neighbourhood U of p such that, for any $q \in U, \operatorname{dim}(M, \mathscr{C})_{q}=\operatorname{dim}(M, \mathscr{C})_{p}$ and $(M, \mathscr{C})_{q}^{\prime}$ $=(M, \mathscr{C})_{q}$. Therefore the module $\mathscr{X}\left(U, \mathscr{C}_{U}\right)$ is differential. From the preceding theorem follows the equality

$$
Z_{p}^{(k)}\left(\mathscr{X}\left(U, \mathscr{C}_{U}\right)\right)=Z_{p}^{k}\left(\mathscr{X}\left(U, \mathscr{C}_{U}\right)\right)
$$

It is easy to prove the present theorem applying equalities (3.3.1). q.e.d.
3.4. The mapping $d_{p}^{(k)}$ for linear field modules. Condition $* \mathrm{k}$). In ([6]) R. Palais has proved the existence and uniqueness of an R-linear mapping $d_{p}^{k}: Z_{p}^{k-1}\left(C^{\infty}(\xi)\right) \rightarrow L_{s}^{k}\left(M_{p}, \xi_{p}\right), \quad k \geqslant 1$, such that if $W \in Z_{p}^{k-1}\left(C^{\infty}(\xi)\right)$ and $h \in C^{\infty}\left(\xi^{*}\right)$, then

$$
\begin{equation*}
d_{p}^{k}(h \circ W)=h(p) \circ d_{p}^{k}(W) \tag{3.4.1}
\end{equation*}
$$

Note that $h \circ W \in I_{p}^{k}(M)$. If $W \in Z_{p}^{k-1}\left(C^{\infty}(\xi)\right)$ and $W=\sum_{i=1}^{n} f^{i} W_{i}$, where $f^{i} \in I_{p}^{k}(M), i=1, \ldots, n$, then

$$
\begin{equation*}
d_{p}^{k}(W)=\sum_{i=1}^{n} d_{p}^{k} f^{i} \otimes W_{i}(p) \tag{3.4.2}
\end{equation*}
$$

Indeed, let us consider a field $h \in C^{\infty}\left(\xi^{*}\right)$ and vectors $v_{1}, \ldots, v_{k} \in M_{p}$. From Lemma 2.1 follows

$$
\begin{aligned}
d_{p}^{k}(h \circ W)\left(v_{1}, \ldots, v_{k}\right) & =\sum_{i=1}^{n} d_{p}^{k}\left(f^{i}\left(h \circ W_{i}\right)\right)\left(v_{1}, \ldots, v_{k}\right) \\
& =\sum_{i=1}^{n}\left(d_{p}^{k} f^{i}\right)\left(h \circ W_{i}\right)(p)\left(v_{1}, \ldots, v_{k}\right) \\
& =\sum_{i=1}^{n}\left(d_{p}^{k} f^{i}\right)\left(v_{1}, \ldots, v_{k}\right)\left(h \circ W_{i}\right)(p) \\
& =h(p)\left(\sum_{i=1}^{n}\left(d_{p}^{k} f^{i}\right)\left(v_{1}, \ldots, v_{k}\right) W_{i}(p)\right) \\
& =h(p)\left(\left(\sum_{i=1}^{n} d_{p}^{k} f^{i} \otimes W_{i}(p)\right)\left(v_{1}, \ldots, v_{k}\right)\right)
\end{aligned}
$$

Applying the formula analogous to (3.4.2) we define the mapping $d_{p}^{(k)}$ for linear field modules. Let $((M, \mathscr{\leftarrow}), \Phi, \mathscr{W})$ be a linear field module.

Definition 3.4.1. We denote by $d_{p}^{(k)}, p \in M, k \in N$, an R-linear mapping

$$
d_{p}^{(k)}: Z_{p}^{(k-1)}(\mathcal{W}) \rightarrow L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, \Phi_{\mathscr{W}}(p)\right)
$$

such that $d_{p}^{(k)}(f \cdot W)=d_{p}^{(k)} f \otimes W(p)$ for $f \in I_{p}^{(k)}(M, \not \subset), W \in \mathscr{W}$.
Theorem 3.4.1. A mapping $d_{p}^{(k)}$ exists if and only if the following condition is satisfied:
$* \mathrm{k}) \quad$ if $\sum_{i=1}^{n} f^{i} W_{i}=0$, where $f^{i} \in I_{p}^{(k)}(M, \mathscr{C}), W_{i} \in \mathscr{W}, i=1, \ldots, n, n \in N$, then

$$
\sum_{i=1}^{n} d_{p}^{(k)} f^{i} \otimes W_{i}(p)=0
$$

There exists at most one mapping $d_{p}^{(k)}$.
Proof. If $d_{p}^{(k)}$ exists and if $\sum_{i=1}^{n} f^{i} W_{i}=0$ for $f^{i} \in I_{p}^{(k)}(M, \mathscr{C}), W_{i} \in \mathscr{W}$, then $\sum_{i=1}^{n} d_{p}^{(k)} f^{i} \otimes W_{i}(p)=\sum_{i=1}^{n} d_{p}^{(k)}\left(f^{i} W_{i}\right)=d_{p}^{(k)}\left(\sum_{i=1}^{n} f^{i} W_{i}\right)=0$, so that condition $\left.* \mathrm{k}\right)$ is satisfied. The existence and uniqueness of the mapping $d_{p}^{(k)}$ under condition $* \mathrm{k})$ is a consequence of the property that any field $W \in Z_{p}^{(k-1)}(\mathcal{W})$ is of the form $\sum_{i=1}^{n} f^{i} W_{i}, f^{i} \in I_{p}^{(k)}(M, \mathscr{C})$, and that $d_{p}^{(k)}(W)=\sum_{i=1}^{n} d_{p}^{(k)} f^{i} \otimes W_{i}(p)$ does not depend on the representation of the field W in this form. Thus the last formula defines the desired R-linear mapping. q.e.d.

It follows directly from the definition of a complete differential of order k that if a complete differential exists in a linear field module, then condition $* \mathrm{k}$) is fulfilled at every point of the underlying space. Condition $* \mathrm{k}$) need not be satisfied in every linear field module.

Example 3.4.1. Consider a differential space $\left(\boldsymbol{R}, \boldsymbol{C}^{\infty}(\boldsymbol{R})\right)$ and the assignement Φ defined as follows: $\Phi(p)=0$ for $p \neq 0$ and $\Phi(0)=R$. Let \mathscr{W} be the module of the all linear Φ-fields. For an arbitrary function $f \in I_{0}^{k} \backslash I_{0}^{k+1}$ and the field $W \in \mathscr{W}$ equal 1 at the point 0 we have

$$
f \cdot W=0 \quad \text { and } \quad d_{0}^{(k)} f \otimes W(p) \neq 0
$$

Remark. Let $((M, \mathscr{C}), \Phi, \mathscr{W})$ be a linear field module. For arbitrary fields $W \in Z_{p}^{(k-1)}(\mathscr{W})$ and $h \in \mathscr{W}^{*}$ we have

$$
h \circ W \in I_{p}^{(k)}(M, \mathscr{C}) \quad \text { and } \quad d_{p}^{(k)}(h \circ W)=h(p) \circ d_{p}^{(k)}(W)
$$

Proof. Assume that the field W is of the form

$$
\sum_{i=1}^{n} f^{i} W_{i} \quad \text { for } f^{i} \in I_{p}^{(k)}(M, \mathscr{C}), i=1, \ldots, n
$$

For any vectors $v_{1}, \ldots, v_{k} \in\left(M, 8_{p}^{\prime}\right.$

$$
\begin{aligned}
d_{p}^{(k)}(h \circ W)\left(v_{1}, \ldots, v_{k}\right) & =h(p) \circ\left(\sum_{i=1}^{n} d_{p}^{(k)} f^{i} \otimes W_{i}(p)\right)\left(v_{1}, \ldots, v_{k}\right) \\
& =h(p)\left(d_{p}^{(k)}\left(\sum_{i=1}^{n} f^{i} W_{i}\right)\right)\left(v_{1}, \ldots, v_{k}\right) \\
& =h(p) \circ d_{p}^{(k)}(W)\left(v_{1}, \ldots, v_{k}\right) . \quad \text { q.e.d. }
\end{aligned}
$$

Condition $* \mathrm{k}$) is satisfied in a fairly broad class of linear field modules (see Theorem 1.4.1).

Theorem 3.4.2. Let $((M, \mathscr{C}), \Phi, \mathscr{W})$ be a linear field module. If this module satisfies at a point p the conditions:
(a) $\operatorname{dim} \Phi_{x}(p)<\infty$,
(b) $\Psi_{w^{*}}(p)=\left(\Phi_{W^{\prime}}(p)\right)^{*}$, where $\Psi(q)=\left(\Phi_{W^{\prime}}(q)\right)^{*}, q \in M$, then for $k \in N$
(A) there exists exactly one R-linear mapping

$$
d_{p}^{[k]}: Z_{p}^{(k-1)}(\mathscr{W}) \rightarrow L_{s}^{k}\left((M, \not \subset)_{p}^{\prime}, \Phi_{\mathscr{W}}(p)\right)
$$

satisfying the equality

$$
\begin{equation*}
d_{p}^{(k)}(h \circ W)=h(p) \circ d_{p}^{[k]}(W) \quad \text { for } W \in Z_{p}^{(k-1)}(\mathscr{W}) \text { and } h \in \mathscr{W}^{*} ; \tag{3.4.3}
\end{equation*}
$$

(B) the module satisfies condition $* \mathrm{k}$) at the point p and $d_{p}^{[\mathrm{k}]}=d_{p}^{(\mathrm{k})}$.

Proof. Assume that conditions (a) and (b) are satisfied at a point $p \in M$. For an arbitrarily fixed field $W \in Z_{p}^{(k-1)}(\mathscr{W})$ there exists the R-linear mapping $\Psi_{W^{*}}(p) \ni w \mapsto d_{p}^{(k)}(h \circ W)$, where $h \in \mathscr{W}^{*}$ and $h(p)=w$; and for any collection of vectors v_{1}, \ldots, v_{k} from $(M, 8)_{p}^{\prime}$ there exists exactly one element $d_{p}^{[k]}(W)\left(v_{1}, \ldots, v_{k}\right) \in \Phi_{W}(p)$ such that

$$
d_{p}^{(k)}(h \circ W)\left(v_{1}, \ldots, v_{k}\right)=h(p)\left(d_{p}^{(k]}(W)\left(v_{1}, \ldots, v_{k}\right)\right)
$$

for $h \in \mathscr{W}^{*}$. The mapping

$$
d_{p}^{[k]}(W)=\left(\underset{k}{X}(M, \mathscr{C})_{p}^{\prime} \ni\left(v_{1}, \ldots, v_{k}\right) \mapsto d_{p}^{[k]}(W)\left(v_{1}, \ldots, v_{k}\right) \in \Phi_{\mathscr{W}}(p)\right)
$$

is symmetric and k-linear; it defines a linear mapping

$$
\left.d_{p}^{(k]}: Z_{p}^{(k-1)}(\mathscr{W}) \rightarrow L_{s}^{k}((M, \mathscr{(}))_{p}^{\prime}, \Phi_{\mathscr{W}}(p)\right) .
$$

This is the only mapping which has property (3.4.3) and we have $d_{p}^{(k)}=d_{p}^{[k]}$. Now we show that condition $* \mathrm{k}$) is fulfilled at the point $p \in M$. Let us
consider any functions $f^{1}, \ldots, f^{n} \in I_{p}^{(k)}(M, \mathscr{C})$ and fields $W_{1}, \ldots, W_{n} \in \mathscr{W}$ such that $\sum_{i=1}^{n} f^{i} W_{i}=0$. For any field $h \in \mathscr{W}^{*}$ and vectors $v_{1}, \ldots, v_{k} \in(M, \mathscr{C})_{p}^{\prime}$

$$
\begin{aligned}
0 & =h(p)\left(d_{p}^{(k)}\left(\sum_{i=1}^{n} f^{i} W_{i}\right)\left(v_{1}, \ldots, v_{k}\right)\right) \\
& =h(p)\left(\sum_{i=1}^{n}\left(d_{p}^{(k)} f^{i}\right) \otimes W_{i}(p)\right)\left(v_{1}, \ldots, v_{k}\right)
\end{aligned}
$$

From assumption (a) and (b) follows

$$
\sum_{i=1}^{n}\left(d_{p}^{(k)} f^{i}\right) \otimes W_{i}(p)=0 . \quad \text { q.e.d. }
$$

Theorem 3.4.3. If a linear field module $((M, \mathscr{C}), \Phi, \mathscr{W})$ satisfies at $p \in M$ the following conditions:
(a) $\operatorname{dim}(M, \mathscr{C})_{p}^{\prime}<\infty$,
(b) $\operatorname{dim} \Phi_{\boldsymbol{w}}(p)<\infty$,
(c) $* \mathrm{k})$,
then the following sequence is exact:

$$
\begin{equation*}
0 \rightarrow Z_{p}^{k}(\mathscr{W}) \hookrightarrow Z_{p}^{(k-1)}(\mathscr{W}) \xrightarrow{d_{p}^{(k)}} L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, \Phi_{W}(p)\right) \rightarrow 0 \tag{3.4.4}
\end{equation*}
$$

Proof. It suffices to show the surjectivity of the mapping $d_{p}^{(k)}$ in the case when $\operatorname{dim} \Phi_{\mathscr{W}}(p)>0$. Let us take an arbitrary element $\tau \in L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, \Phi_{w}(p)\right)$ and a basis v_{1}, \ldots, v_{k} of the space $\Phi_{w}(p)$. There exist elements $\tau^{1}, \ldots, \tau^{r}$ $\in L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, R\right)$ such that $\tau=\sum_{i=1}^{r} \tau^{i} \otimes v_{i}$. From Theorem 2.1 we conclude that there exist functions $f^{1}, \ldots, f^{r} \in I_{p}^{(k)}(M, \mathscr{C})$ such that $d_{p}^{(k)} f^{i}=\tau^{i}$, $i=1, \ldots, r$. For any fields $W_{1}, \ldots, W_{r} \in \mathscr{W}$ such that $W_{i}(p)=v_{i}, i=1, \ldots, r$, the equality $d_{p}^{(k)}\left(\sum_{i=1}^{n} f^{i} W_{i}\right)=\tau$ is satisfied. q.e.d.

In what follows we assume that all linear field modules under consideration satisfy the assumptions of the last theorem.

From the definition of the mapping $d_{p}^{(k)}$ follows the equality: $Z_{p}^{k}(\mathscr{W})$ $=\operatorname{ker} d_{p}^{(k)}$. Therefore there exists a linear isomorphism

$$
\varrho_{p}^{k}: Z_{p}^{(k-1)}(\mathscr{W}) / Z_{p}^{k}(\mathscr{W}) \rightarrow L_{s}^{k}\left((M, C)_{p}^{\prime}, \Phi_{W}(p)\right)
$$

with the property $\varrho_{p}^{k}\left(W+Z_{p}^{k}(\mathscr{W})\right)=d_{p}^{(k)}(W)$ for $W \in Z_{p}^{(k-1)}(\mathscr{W})$. The inverse isomorphism will be denoted by i_{p}^{k}; it will be considered as an injective linear mapping

$$
i_{p}^{k}: L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, \Phi_{\mathscr{W}}(p)\right) \rightarrow \mathscr{W} / Z_{p}^{k}(\mathscr{W})
$$

Since $Z_{p}^{k}(\mathscr{W}) \subset Z_{p}^{(k-1)}(\mathscr{W})$, there exists the canonical surjective linear mapping

$$
r_{p}^{k,(k-1)}: \mathscr{W} / Z_{p}^{k}(\mathscr{W}) \rightarrow \mathscr{W} / Z_{p}^{(k-1)}(\mathscr{W})
$$

with the kernel $Z_{p}^{(k-1)}(\mathscr{W}) / Z_{p}^{k}(\mathscr{W})$ (equal to im $\left.i_{p}^{k}\right)$. Hence the following sequence is exact:

$$
\begin{equation*}
0 \rightarrow L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, \Phi_{\mathscr{W}}(p)\right) \xrightarrow{i_{p}^{k}} \mathscr{W} / Z_{p}^{k}(\mathcal{W}) \xrightarrow{k_{p}^{k_{0}(k-1)}} \mathscr{W} / Z_{p}^{(k-1)}(\mathscr{W}) \rightarrow 0 . \tag{3.4.5}
\end{equation*}
$$

Definition 3.4.2. Consider an arbitrary non-negative number k, a linear field module $((M, \mathscr{\mathscr { C }}), \Phi, \mathscr{W})$ and a point $p \in M$. Denote by

$$
j_{p}^{k}: \mathscr{W} \rightarrow \mathscr{W} / Z_{p}^{k}(\mathscr{W}) \quad \text { and } \quad j_{p}^{(k)}: \mathscr{W} \rightarrow \mathscr{W} / Z_{p}^{(k)}(\mathscr{W})
$$

the canonical linear mappings. The spaces

$$
J_{p}^{k}(\mathscr{W})=\mathscr{W} / Z_{p}^{k}(\mathscr{W}) \quad \text { and } \quad J_{p}^{(k)}(\mathscr{W})=\mathscr{W} / Z_{p}^{(k)}(\mathscr{W})
$$

will be called the jet spaces, of order k and (k), respectively, at the point p.
For any field $W \in Z_{p}^{(k-1)}(\mathcal{W})$

$$
\begin{equation*}
j_{p}^{k}(W)=i_{p}^{k}\left(d_{p}^{(k)}(W)\right) . \tag{3.4.6}
\end{equation*}
$$

Indeed, $i_{p}^{k}\left(d_{p}^{(k)}(W)\right)=i_{p}^{k}\left(\varrho_{p}^{k}\left(W+Z_{p}^{k}(\mathscr{W})\right)\right)=i_{p}^{k}\left(\varrho_{p}^{k}\left(j_{p}^{k}(W)\right)\right)=j_{p}^{k}(W)$.
Lemma 3.4.1. If D^{k} is a complete differential of order k in a linear field module $((M, \mathscr{C}), \Phi, \mathscr{W})$, then for any point $p \in M$ there exists exactly one R linear mapping

$$
T_{p}: J_{p}^{k}(\mathscr{W}) \rightarrow L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, \Phi_{\mathscr{W}}(p)\right)
$$

such that $D_{p}^{k}=T_{p} \circ j_{p}^{k}$. It will be called the mapping linearizing the complete differential D^{k} at the point p. It satisfies the condition: $T_{p} \circ i_{p}^{k}=\mathrm{id}$.

Proof. If there exists a mapping linearizing the complete differential $D^{\boldsymbol{k}}$ at a point p, then it is defined by the formula

$$
\begin{equation*}
T_{p}\left(j_{p}^{k}(W)\right)=D_{p}^{k}(W) \tag{3.4.7}
\end{equation*}
$$

therefore there exists at most one such mapping.
Consider the mapping T_{p} defined by formula (3.4.7). The formula defines the mapping T_{p} correctly because if $j_{p}^{k}(W)=j_{p}^{k}\left(W^{\prime}\right)$, then $\left(W-W^{\prime}\right) \in Z_{p}^{k}(\mathscr{W})$, which implies $D_{p}^{k}\left(W-W^{\prime}\right)=0$. The equality $T_{p} \circ i_{p}^{k}=$ id follows from $D_{p}^{k}(W)$ $=d_{p}^{(k)}(W)$ for $W \in Z_{p}^{(k-1)}(\mathscr{W})$. q.e.d.

To conclude this subsection we prove one more important fact.
Theorem 3.4.4. If D^{k} is a complete differential of order k in a linear field module $((M, \mathscr{E}), \Phi, \mathscr{W})$ and T_{p} is the mapping linearizing D^{k} at a point p, then

$$
\text { ker } r_{p}^{k,(k-1)} \cap \text { ker } T_{p}=0
$$

Proof. Let us consider any field $W \in \mathscr{W}$ such that

$$
j_{p}^{k}(W) \in \operatorname{ker} r_{p}^{k,(k-1)} \cap \operatorname{ker} T_{p} .
$$

Then $W \in Z_{p}^{(k-1)}(\mathscr{W})$ and so $W=\sum_{i=1}^{n} f^{i} W_{i}$ for certain functions $f^{1}, \ldots, f^{n} \in I_{p}^{(k)}(M, \mathscr{C})$ and fields $W_{1}, \ldots, W_{n} \in \mathscr{W}$. Besides,

$$
0=T_{p}\left(j_{p}^{k}(W)\right)=D_{p}^{k}(W)=D_{p}^{k}\left(\sum_{i=1}^{n} f^{i} W_{i}\right)=\sum_{i=1}^{n} d_{p}^{(k)} f^{i} \otimes W_{i}(p)
$$

hence $W \in Z_{p}^{k}(\mathcal{W})$ and consequently $j_{p}^{k}(W)=0$. q.e.d.

3.5. Jet field module of order k and (k). An exact sequence of jet-modules.

Definition 3.5.1. (a) The (k)-order jet field module, $k=0,1, \ldots$, of a linear field module $((M, \mathscr{\mathscr { C }}), \Phi, \mathscr{W})$ is the least linear $\left(M \ni p \mapsto J_{p}^{(k)}(\mathscr{W})\right.$)-field module closed with respect to localization, containing all fields of the form:

$$
M \ni p \mapsto j_{p}^{(k)}(W) \in J_{p}^{(k)}(\mathscr{W}) \quad \text { for } W \in \mathscr{W} .
$$

(b) The k-order jet field module, $k=0,1,2, \ldots$, of a linear field module $((M, 8), \Phi, \mathscr{W})$ is the least $\left(M \ni p \mapsto J_{p}^{k}(\mathscr{W})\right)$-field module closed with respect to localization, containing all fields of the form:

$$
\begin{equation*}
M \ni p \mapsto j_{p}^{k}(W) \in J_{p}^{k}(\mathscr{W}) \quad \text { for } W \in \mathscr{W}, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
M \ni p \mapsto i_{p}^{k}\left(S_{p}\right) \in J_{p}^{k}(\mathscr{W}) \quad \text { for } S \in L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W}) . \tag{ii}
\end{equation*}
$$

\therefore It is clear that for any jet fields S of order k the field $\left(M \ni p \mapsto r r_{p}^{k,(k-1)}\left(S_{p}\right)\right)$ is a jet field of order $(k-1)$. Moreover, the mappings $i^{k}: \boldsymbol{L}_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W}) \rightarrow J^{k}(\mathscr{W})$ and $r^{k,(k-1)}: J^{k}(\mathscr{W}) \rightarrow J^{(k-1)}(\mathscr{W})$ defined by the formula $i^{k}(L)(p)=i_{p}^{k}\left(L_{p}\right)$ for $L \in L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W})$ and $p \in M$,

$$
j^{k}: \mathscr{W} \rightarrow J^{k}(\mathscr{W}) \quad \text { and } \quad j^{(k)}: \mathscr{W} \rightarrow J^{(k)}(\mathscr{W}) .
$$

Notice also that $j^{0}: \mathscr{W} \rightarrow J^{0}(\mathscr{W})$ is a \mathscr{C}-linear mapping.
In the sequel of this section we shall examine the sequence

$$
\begin{equation*}
0 \rightarrow L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W}) \xrightarrow{i^{k}} J^{k}(\mathscr{W}) \xrightarrow{k^{k},(k-1)} J^{(k-1)}(\mathscr{W}) \rightarrow 0 \tag{3.5.1}
\end{equation*}
$$

called the jet-module sequence.
Theorem 3.5.1. If a differential space (M, \mathscr{C}) is paracompact and C normal, then the mapping $r^{k,(k-1)}$ in sequence (3.5.1) is a surjection.

Proof. Let us consider an arbitrary field $W \in J^{(k-1)}(\mathcal{W})$. For any point $p \in M$ there exists a neighbourhood $U^{p} \in \tau_{\varepsilon}$ of p such that $W \mid U^{p}$ $=\left(\sum_{i=1}^{n} f^{i} j^{(k-1)} W_{i}\right) \mid U^{p}$ for a certain positive integer n, functions $f^{i} \in \mathscr{C}$ and
fields $W^{i} \in \mathscr{W}, i=1,2, \ldots, n$. According to paracompactness, we subordinate a locally finite family ($V_{t}, t \in T$) to the family ($U^{p}, p \in M$), and applying \mathscr{C}_{6} normality we choose a smooth partition of unity $\left(\varphi_{1}\right)_{\epsilon \in T}$ subordinate to this covering. We define fields $\theta_{t} \in J^{k}(\mathscr{W}), t \in T$, by the formula $\theta_{t}=\sum_{i=1}^{n} f^{i} j^{k}\left(W_{i}\right)$ and we put $\theta=\sum_{t \in T} \varphi_{t} \theta_{t}$. Obviously $\theta \in J^{k}(\mathscr{W})$, and since $r_{p}^{k,(k-1)}\left(\theta_{t}(p)\right)=W(p)$ for $p \in V_{t}$, we have $r^{k,(k-1)}(\theta)=W$. q.e.d.

The exactness of sequence (3.5.1) at the term " $J^{k}(\mathscr{W})$ " in the case $k=1$ will be proved without additional assumptions about the module \mathscr{W}. In the general case it will be proved for a broad class of linear field modules containing pseudo-differential modules.

To show exactness let us consider an arbitrary field $S \in \operatorname{ker} r^{k,(k-1)}$ and notice that there exists exactly one field L such that $i_{p}^{k}\left(L_{p}\right)=S_{p}$ for any point $p \in M$. We shall check that $L \in L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W})$. From the definition of the module $J^{k}(\mathscr{W})$ it follows that in a certain neighbourhood U of $p \in M$ the field S is of the form

$$
S\left|U=i^{k}(E)\right| U+\left(\sum_{j=1}^{n} f^{j} j^{k}\left(W_{j}\right)\right) \mid U
$$

for some field $L \in L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W})$, a positive integer n, functions $f^{1}, \ldots, f^{n} \in \mathscr{C}$ and fields $W_{1}, \ldots, W_{n} \in \mathscr{W}$. Since for any point $q \in U$,

$$
\begin{aligned}
0 & =r_{q}^{k,(k-1)}\left(S_{q}\right)=r_{q}^{k,(k-1)}\left(i_{p}^{k}\left(L_{q}\right)+\sum_{j=1}^{n} f^{j}(q) j_{q}^{k}\left(W_{j}\right)\right) \\
& =j_{q}^{(k-1)}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\right),
\end{aligned}
$$

then $\sum_{j=1}^{n} f^{j}(q) W_{j} \in Z_{q}^{(k-1)}(\mathscr{W})$.
From equality (3.4.6) one can easily derive the equality

$$
\begin{aligned}
i_{q}^{k}\left(L_{q}\right) & =S_{q}=i_{q}^{k}\left(L_{q}\right)+j_{q}^{k}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\right)=i_{q}^{k}\left(L_{q}\right)+i_{q}^{k}\left(d_{q}^{(k)}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\right)\right) \\
& =i_{q}^{k}\left(E_{q}+d_{q}^{(k)}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\right)\right) .
\end{aligned}
$$

As i_{q}^{k} is an injection, we have

$$
\begin{equation*}
L_{q}=E_{q}+d_{q}^{(k)}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\right) \quad \text { for } q \in U . \tag{3.5.2}
\end{equation*}
$$

To prove exactness it suffices to show that

$$
\left(U \ni q \mapsto d_{q}^{(k)}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\right)\left(V_{1}(q), \ldots, V_{k}(q)\right)\right) \in \mathscr{W}_{U}
$$

for $V_{1}, \ldots, V_{k} \in \mathscr{X}\left(U, \mathscr{C}_{U}\right)$.
Тнеогем 3.5.2. The sequence

$$
0 \rightarrow L(\mathscr{X}(M, \mathscr{C}), \mathscr{W}) \xrightarrow{i^{1}} J^{1}(\mathscr{W}) \xrightarrow{r^{1,0}} J^{0}(\mathscr{W})
$$

is exact.
Proof. Since $\sum_{j=1}^{n} f^{j}(q) W_{j} \in Z_{q}^{0}(\mathscr{W})$ for $q \in U$, then in particular $\left(\sum_{j=1}^{n} f^{j} W_{j}\right) \mid U=0$, and so $\sum_{j=1}^{n}\left(f^{j}-f^{j}(q)\right) W_{j} \in Z_{q}^{0}(\mathcal{W})$. Hence

$$
0=d_{q}^{(1)}\left(\sum_{j=1}^{n} f^{j} W_{j}\right)=d_{q}^{(1)}\left(\sum_{j=1}^{n}\left(f^{j}-f^{j}(q)\right) W_{j}\right)+d_{q}^{(1)}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\right),
$$

and this produces the equalities:

$$
\begin{aligned}
d_{q}^{(1)}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\right)(V(q)) & =-d_{q}^{(1)}\left(\sum_{j=1}^{n}\left(f^{j}-f^{j}(q)\right) W_{j}\right)(V(q)) \\
& =-\sum_{j=1}^{n} d_{q}^{(1)}\left(f^{j}-f^{j}(q)\right) \otimes W_{j}(q)(V(q)) \\
& =-\sum_{j=1}^{n} d_{q}^{(1)}\left(f^{j}-f^{j}(q)\right)(V(q)) W_{j}(q) \\
& =-\sum_{j=1}^{n} V(q)\left(f^{j}-f^{j}(q)\right) W_{j}(q) \\
& =-\sum_{j=1}^{n} V(q)\left(f^{j}\right) W_{j}(q)=-\left(\sum_{j=1}^{n} V\left(f^{j}\right) W_{j}\right)(q) . \quad \text { q.e.d. }
\end{aligned}
$$

Theorem 3.5.3. If a linear field module $((\boldsymbol{M}, \mathscr{\varnothing}), \Phi, \mathscr{W})$ satisfies condition:
whenewer W is a linear $\Phi_{\boldsymbol{W}}$-field such that, for any field $h \in \mathscr{W}^{*}$, the function $h \circ W$ is from the ring \mathscr{C}, then $W \in \mathscr{W}$,
then the sequence

$$
0 \rightarrow L_{s}^{k}(\mathscr{X}(M, \mathscr{E}), \mathscr{W}) \xrightarrow{i^{k}} J^{k}(\mathscr{W}) \xrightarrow{, r_{,(k-1)}} J^{(k-1)}(\mathscr{W})
$$

is exact.

Proof. We shall show that every point $p \in U$ has a neighbourhood $V \subset U$ such that

$$
\left(V \ni q \mapsto d_{q}^{(k)}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\left(V_{1}(q), \ldots, V_{k}(q)\right)\right)\right) \in \mathscr{W}_{V}=\left(\mathscr{W}_{v}\right)_{V}
$$

for $V_{1}, \ldots, V_{k} \in \mathscr{X}\left(V, \mathscr{C}_{V}\right)$.
Let us consider a function $\gamma \in \mathscr{C}$ separating the point p in the set U, i.e. a function γ such that $\gamma \mid B_{0}=1$ for some neighbourhood B_{0} of p and $\gamma \mid U_{0}=0$ for an open set U_{0} such that $U_{0} \cup U=M$. Obviously,

$$
\gamma \cdot \sum_{j=1}^{n} f^{j}(q) W_{j} \in Z_{q}^{(k-1)}(\boldsymbol{W})
$$

for any $q \in M$. We put $V=B_{0}$. Then for $q \in V$ we have

$$
d_{q}^{(k)}\left(\gamma \cdot \sum_{j=1}^{n} f^{j}(q) W_{j}\right)=d_{q}^{(k)}\left(\sum_{j=1}^{n} f^{j}(q) W_{j}\right) .
$$

It suffices to show that

$$
\begin{equation*}
\left(M \ni q \mapsto d_{q}^{(k)}\left(\gamma \cdot \sum_{j=1}^{n} f^{j}(q) W_{j}\right)\left(V_{1}(q), \ldots, V_{k}(q)\right)\right) \in \mathscr{W} . \tag{3.5.3}
\end{equation*}
$$

For an arbitrary field $h \in \mathscr{W}^{*}$ it follows from Theorem 3.4.2 that

$$
\begin{aligned}
& h(q)\left(d_{q}^{(k)}\left(\gamma \cdot \sum_{j=1}^{n} f^{j}(q) W_{j}\right)\left(V_{1}(q), \ldots, V_{k}(q)\right)\right) \\
&=d_{q}^{(k)}\left(h \circ\left(\gamma \cdot \sum_{j=1}^{n} f^{j}(q) W_{j}\right)\left(V_{1}(q), \ldots, V_{k}(q)\right)\right) \\
&=d_{q}^{(k)}\left(\sum_{j=1}^{n} \gamma \cdot f^{j}(q) h \circ W_{j}\right)\left(V_{1}(q), \ldots, V_{k}(q)\right) \\
&=\left(\left(V_{1}, \ldots, V_{k}\right)\left(\sum_{j=1}^{n} \gamma \cdot f^{j}(q) h \circ W_{j}\right)\right)(q) \\
&=\sum_{j=1}^{n} f^{j}(q)\left[\left(V_{1}, \ldots, V_{k}\right)\left(\gamma \cdot h \circ W_{j}\right)\right](q) \\
&=\left(\sum_{j=1}^{n} f^{j}\left[\left(V_{1}, \ldots, V_{k}\right)\left(\gamma \cdot h \circ W_{j}\right)\right]\right)(q) . \quad \text { q.e.d. }
\end{aligned}
$$

Now we present the announced example of a linear field module $((M, \mathscr{\&}), \Phi, \mathscr{W})$ for which there exists a $\mathscr{\mathscr { C }}$-linear mapping $L: \mathscr{X}(M, \mathscr{\mathscr { }}) \rightarrow \mathscr{W}$ which is not a linear Ψ-field for $\Psi=\left(M \ni q \mapsto L\left(\left(M, \delta^{\prime}\right)_{p}^{\prime}, \Phi_{\psi}(p)\right)\right)$.

Example 3.5.1. Consider the differential space

$$
(R, \mathscr{C})=\left(R,\left(S_{C}\left(\left\{\mathrm{id}_{R},(R \ni x \mapsto|x|)\right\}\right)\right)_{R}\right) .
$$

This space is of class \mathscr{D}_{0}. Let $e_{x} \in\left(\boldsymbol{R}, C^{\infty}(\boldsymbol{R})\right)_{x}$ for $x \neq 0$ be unitary vector, i.e. such that $e_{x}\left(\mathrm{id}_{R}\right)=1$. The tangent space $(R, \mathscr{\mathscr { C }})_{0}$ is 2 -dimensional, having as a basis the vectors e_{0} and ω defined by the formulas:

$$
e_{0}\left(\mathrm{id}_{R}\right)=1, \quad e_{0}(|\cdot|)=0 ; \quad \omega\left(\mathrm{id}_{R}\right)=0, \quad \omega(|\cdot|)=1 .
$$

The vector field $V=\left(R \ni x \mapsto x e_{x} \in(R, \mathscr{\mathscr { }})_{x}\right)$ is smooth because $V\left(\mathrm{id}_{R}\right)$ $=\operatorname{id}_{R}$ and $V(|\cdot|)=|\cdot|$. It cannot be written in the form $\sum_{i=1}^{n} f^{i} W_{i}$ for any numbers $n \in N$, functions $f^{1}, \ldots, f^{n} \in I_{0}^{(1)}(R, \mathscr{C})$ and fields W_{1}, \ldots, W_{n} $\in \mathscr{X}(R, \mathscr{C})$. Every vector field $W \in \mathscr{X}(R, \mathscr{C})$ is equal 0 at the point 0 and so, if $V=\sum_{i=1}^{n} f^{i} W_{i}$ for functions f^{i} with $f^{i}(p)=0, i=1, \ldots, n$, then $V\left(\mathrm{id}_{R}\right)$ $=\sum_{i=1}^{n} f^{i} W_{i}\left(\mathrm{id}_{R}\right)$. We thus would get the equality $\mathrm{id}_{R}=\sum_{i=1}^{n} f^{i} g_{i}$ for certain functions $f^{i}, g_{i}, i=1, \ldots, n$, from the ideal $I_{0}(R, \mathscr{C})$, and this produces a contradiction:

$$
1=e_{0}\left(\mathrm{id}_{R}\right)=\sum_{i=1}^{n} e_{0}\left(f^{i} g_{i}\right)=0
$$

Now take a jet field module of order 0 of the initial module and a \mathscr{C} linear mapping $j^{0}: \mathscr{X}(R, \mathscr{C}) \rightarrow J^{0}(\mathscr{X}(M, \mathscr{C})) \cdot j^{0}$ is not a linear Ψ-field because for the vector field V we have

$$
V(0)=0 \quad \text { and } \quad j^{0}(V)(0)=j_{0}^{0}(V) \neq 0 .
$$

A scalar product in a linear field module $((M, \mathscr{C}), \Phi, \mathscr{W})$ is a linear field $G \in L_{s}^{2}(W, \mathscr{C})$ such that $G(p)(v, v)>0$ for $0 \neq v \in \Phi_{\mathscr{W}}(p)$ and $G^{*}: \mathscr{W} \rightarrow \mathscr{W}^{*}$ defined by the formula $G^{*}(V)(W)=G(V, W)$ is an isomorphism of linear field modules.

Example 3.5.2. In the space (R, \mathscr{C}) from the preceding example every smooth vector field is of the form $f \cdot e$, where $f \in \mathscr{C}$ is a function such that $f(0)=0$. Every linear field $h \in \mathscr{W}^{*}$ is of the form $f \cdot e^{*}$, where $f: R \rightarrow R$ is a function such that $f(0)=0, f \cdot \mathrm{id}_{R} \in \mathscr{C}$ and $f \cdot|\cdot| \in \mathscr{C}$. The function f defined by the formula $f(x)=1$ when $x \neq 0$ and $f(0)=0$ can serve as example. We shall construct a scalar product G in the module $\mathscr{X}(R, \mathscr{C})$. We put $G(x)\left(e_{x}, e_{x}\right)=1 / x$ for $x \neq 0$ and, of course, $G(0)=0$. As every function $f \in \mathscr{C}$ equal 0 at the point 0 is of the form $f(x)=x \cdot f_{1}(x)+|x| \cdot f_{2}(x), x \in R$, where $f_{1}, f_{2} \in \mathscr{C}$, we see that $G(V, W) \in \mathscr{C}$ for $V, W \in \mathscr{X}(R, \mathscr{C})$. Let us take the vector field $V=f \cdot \mathrm{id}_{R} \cdot e$ for any field $h \in \mathscr{W}^{*}$ of the form $f \cdot e^{*}$. Then $V \in \mathscr{X}(R, \mathscr{C})$
and $G(V, W)=h(W)$. It is clear that the form $G(x), x \in R$, is positive, and so G is a scalar product.

In the module $\mathscr{X}(R, \mathscr{C})$ there exists a symmetric covariant derivative determined by the scalar product just constructed. Notice that if $f, g \in \mathscr{C}$ and $f(0)=g(0)=0$, then the function g is differentiable except at zero and the function h defined by the formula

$$
h(x)=f(x) g^{\prime}(x) \quad \text { for } x \neq 0 \text { and } h(0)=0
$$

is from the ring $\mathscr{\mathscr { C }}$. It is easy to prove that the following formula defines the generated covariant derivative:

$$
\left(\nabla_{f \cdot e} g \cdot e\right)(x)= \begin{cases}\left(f \cdot g^{\prime}-g \cdot f /\left(2 \cdot \mathrm{id}_{R}\right)\right)(x) e_{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

4. Complete differentials of higher order in relation to splittings of a sequence of jet-modules.

Definition 4.1. A splitting of the exact sequence of jet-modules

$$
0 \rightarrow L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W}) \rightarrow J^{k}(\mathscr{W}) \rightarrow J^{(k-1)}(\mathscr{W}) \rightarrow 0
$$

(also a connection in the case $k=1$) is an assignment

$$
M \ni p \mapsto \mathscr{T}_{p} \subset J_{p}^{k}(\mathscr{W})
$$

satisfying the conditions:
(i) \mathscr{T}_{p} is a linear subspace of the space $J_{p}^{k}(\mathscr{W})$,
(ii) $J_{p}^{k}(\mathscr{W})=\mathscr{T}_{p} \oplus \operatorname{ker} r_{p}^{k,(k-1)}, p \in M$,
(iii) if $P_{p}: J_{p}^{k}(\mathscr{W}) \rightarrow \operatorname{ker} r_{p}^{k,(k-1)}$ is the projection defined by the above direct sum then for $S \in J^{k}(\mathcal{W})$ the field

$$
P(S)=\left(M \ni p \mapsto P_{p}\left(S_{p}\right)\right)
$$

belongs to the module $J^{k}(\mathcal{W})$.
Theorem 4.1. If D^{k} is a complete differential of order k in a linear field module $((M, \mathscr{C}), \Phi, \mathscr{W})$ and T_{p} is a mapping linearizing this differential at a point $p \in M$, then the assignment $M \ni p \mapsto \operatorname{ker} T_{p}$ is a splitting of the exact jetmodule sequence of order k.

Proof. Theorem 3.4.4 states that ker $T_{p} \cap$ ker $r_{p}^{k_{p}^{(, k-1)}}=0$. For any element $j_{p}^{k}(W) \in J_{p}^{k}(\mathscr{W}), W \in \mathscr{W}$, we have $j_{p}^{k}(W)=i_{p}^{k}\left(D_{p}^{k}(W)\right)+\left(i_{p}^{k}\left(-D_{p}^{k}(W)\right)+\right.$ $\left.+j_{p}^{k}(W)\right)$ and $i_{p}^{k}\left(D_{p}^{k}(W)\right) \in \operatorname{ker} r_{p}^{k,(k-1)}$ and, by Lemma 3.4.1, $T_{p}\left(i_{p}^{k}\left(-D_{p}^{k}(W)\right)+\right.$ $\left.+j_{p}^{k}(W)\right)=-D_{p}^{k}(W)+D_{p}^{k}(W)=0$; thus condition (ii) is fulfilled. Now consider an arbitrary field $S \in J^{k}(\mathscr{W})$; in a certain neighbourhood U of p the field S is of the form $S\left|U=i^{k}(E)\right| U+\left(\sum_{j=1}^{n} f^{j} j^{k}\left(W_{j}\right)\right) \mid U$ for a certain field
$\left\lfloor\in L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W})\right.$, a number $n \in N$, functions $f^{1}, \ldots, f^{n} \in \mathscr{C}$ and fields $W_{1}, \ldots, W_{n} \in \mathscr{W}$. Hence

$$
\begin{aligned}
P(S) \mid U & =P\left(i^{k}(£)+\sum_{j=1}^{n} f^{j} j^{k}\left(W_{j}\right)\right) \mid U \\
& =i^{k}(£)\left|U+\sum_{j=1}^{n} f^{j}\right| U \cdot P\left(j^{k}\left(W_{j}\right)\right) \mid U \\
& =i^{k}\left(\lfloor)\left|U+\sum_{j=1}^{n} f^{j}\right| U \cdot i^{k}\left(D^{k}\left(W_{j}\right)\right) \mid U .\right. \\
& =\left(i^{k}(£)+\sum_{j=1}^{n} f^{j} \cdot i^{k}\left(D^{k}\left(W_{j}\right)\right)\right) \mid U
\end{aligned}
$$

is an element of the module $J^{k}(W)_{U}$. q.e.d.
Theorem 4.2. If $\left(\mathscr{T}_{p}\right)_{p \in M}$ is splitting of the exact jet-module sequence of order k, then there exists exactly one homomorphism of linear field modules

$$
T: J^{k}(\mathscr{W}) \rightarrow L_{s}^{k}(\mathscr{X}(M, \not \subset), \mathscr{W})
$$

such that:
(i) $\operatorname{ker} T_{p}=\mathscr{T}_{p}, p \in M$,
(ii) $T \circ i^{k}=$ id.

Moreover, $T \circ j^{k}$ is a complete differential of order k in the module \mathscr{W}.
Proof. Consider the projection P_{p} and the projection $R_{p}: J_{p}^{k}(\mathscr{W}) \rightarrow \boldsymbol{T}_{p}$ defined by the direct sum $J_{p}^{k}(\mathscr{W})=\operatorname{ker} r_{p}^{k,(k-1)} \oplus \mathscr{T}_{p}, \quad p \in M$. Since $P_{p}\left(j_{p}^{k}(W)\right) \in \operatorname{ker} r_{p}^{k,(k-1)}=\operatorname{im} i_{p}^{k}$ for $W \in \mathscr{W}$, there exists exactly one element $s_{p} \in L_{s}^{k}\left((M, \mathscr{C})_{p}^{\prime}, \Phi_{\mathscr{W}}(p)\right)$ associated with $W \in \mathscr{W}$ such that $\left.P_{p} j_{p}^{k}(W)\right)=i_{p}^{k}\left(s_{p}\right)$. Hence for $W \in \mathscr{W}$

$$
T_{p}\left(j_{p}^{k}(W)\right)=T_{p}\left(R_{p}\left(j_{p}^{k}(W)\right)+P_{p}\left(j_{p}^{k}(W)\right)\right)=T_{p}\left(P_{p}\left(j_{p}^{k}(W)\right)\right)=T_{p}\left(i_{p}^{k}\left(s_{p}\right)\right)=s_{p} .
$$

This proves the uniqueness of the mapping T_{p} and gives the method of computing it. Now it must be proved that

$$
T(S)=\left(M \ni p \mapsto T_{p}\left(S_{p}\right)\right) \in L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W})
$$

for any field $S \in J^{k}(\mathscr{W})$. As in the foregoing theorem, S will be given in the form $S\left|U=i^{k}(E)\right| U+\left(\sum_{j=1}^{n} f^{j} j^{k}\left(W_{j}\right)\right) \mid U$. Then

$$
T(S) \mid U=T\left(i^{k}(L)+\sum_{j=1}^{n} f^{j} j^{k}\left(W_{j}\right)|U=亡| U+\sum_{j=1}^{n}\left(f^{j} \cdot T\left(j^{k}\left(W_{j}\right)\right) \mid U .\right.\right.
$$

From the exactness of the jet-module sequence of order k follows the existence of fields $L_{j}, j=1, \ldots, n$, from the spaces $L_{s}^{k}(\mathscr{X}(M, \mathscr{C}), \mathscr{W})$ such that $P\left(j^{k}\left(W_{j}\right)\right)=i^{k}\left(L_{j}\right)$. Hence

$$
T(S)\left|U=\left(£+\sum_{j=1}^{n} f^{j} Ł_{j}\right)\right| U .
$$

It is easy to check that $T \circ j^{k}$ is an R-linear mapping. Finally, if $f \in \mathscr{C}$, $f-f(p) \in I_{p}^{(k)}(M, \mathscr{C})$ and $W \in \mathscr{W}$, then from (3.4.6) we have

$$
\begin{aligned}
T_{p} \circ j_{p}^{k}(f \cdot W) & =T_{p} \circ j_{p}^{k}((f-f(p)) W)+T_{p} \circ j_{p}^{k}(f(p) W) \\
& =T_{p}\left(i_{p}^{k}\left(d_{p}^{(k)}((f-f(p)) W)\right)\right)+f(p) T_{p} \circ j_{p}^{k}(W) \\
& =d_{p}^{(k)}(f-f(p)) \otimes W(p)+f(p) T_{p} \circ j_{p}^{k}(W) . \quad \text { q.e.d. }
\end{aligned}
$$

References

[1] E. Cartan, Sur les variétés de courbure constante d'un espace euclidien ou non euclidien, Bull. Soc. Math. France 47 (1919), 125-160; 48 (1920), 132-208.
[2] K. Cegiełka, An existing of a smooth partition of unity and a scalar product in a differential space, Demonstratio Math. 6.2 (1973), 493-504.
[3] -, A connection in a differential module, Colloq. Math. 34 (1975), 271-286.
[4] C. Ehresmann, Les prolongements dune variété différentiable, I-V, C. R. Acad. Sci. Paris 233 (1951), 598-600, 777-779, 1081-1083; 234 (1952), 1028-1030, 1424-1425.
[5] S. Mac Lane, Differentiable spaces. Notes for geometrical mechanics, Winter 1970.
[6] R. Palais, Seminar on the Atiyah-Singer index theorem, Princeton, New Jersey, Princeton University Press, 1965.
[7] W. Pohl, Differential geometry of higher order, Topology 1, 169-211.
[8] M. Pustelnik, Sufficient conditions for the existence of a scalar product on a generalized module of vector fields, Demonstratio Math. 8.4 (1975), 425-446.
[9] N. V. Que, De la connexion dordre superieur, C. R. Acad. Sci. Paris 259, Groupe 1, 20612064.
[10] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967) 251-272.
[11] -, Differential modules, ibidem 24 (1971), 45-79.
[12] -, Wstẹp do do geometrii różniczkowej, PWN, Warszawa 1972.
[13] D. Spencer, Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75 (1969), 179-239.
[14] -, Flat differential operators, Symposium on Several Complex Variables (Park City, Utah 1970), 85-108.
[15] P. Walczak, On restriction of differential structures coinduced by a mapping, Bull. Acad. Polon. Sci., Ser. Sci. Math., Astronom. Phys. 21 (1973), 417-420.
[16] -, A theorem on diffeomorphisms in the category of differential spaces, ibidem 21 (1973), 325-329.
[17] -, On a class of diffeomorphisms spaces satisfying the theorem on diffeomorphisms, I, ibidem 22 (1974), 805-814; II, 22 (1974), 815-820.
[18] W. Waliszewski, On a coregular division of a differential spaces by a equivalence relation, Colloq. Math. 26 (1972), 281-291.
[19] -, Regular and coregular mappings of differential spaces, Ann. Polon. Math. 30 (1975), 262-281.

