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Complete differentials of higher order in linear field modules

by JAN KUBARSKI (Lodz)

Abstract. Complete differentials of higher order in linear field modules are defined. A
certain necessary condition for the existence of a complete differential of higher order is given. It
is proved that this condition holds in a broad class of linear field modules, which contains
differential modules and modules of vector fields on differential spaces of class ^/0. Jel-field
modules of a linear field module are constructed. The exactness of the sequence of jet-modules is
examined. A one-to-one correspondence between complete differentials of higher order and
splittings of jet-module sequences is established. An example of a differential space of class V0 is
given in which

1° the module of vector fields over that space in every neighbourhood of a certain point
does not possess any vector basis, i.e. it is not differential,

2° a covariant derivative, i.e. a complete differential of the first order, exists in the module
of vector fields.

Introduction. We consider a manifold M and a vector bundle £ over M
and we denote (as usual) by Jk(^) the vector bundle of holonomic fc -order
jets of local sections of £. The exact sequence of vector bundles

called the sequence of jet-bundles is well known from the works by R. Palais
([6]), N. V. Que ([9]), D. Spencer ([13], [14]) and others. A differential
operator of order /c, corresponding to a splitting of the sequence, is termed
by Palais a complete differential of order k.'m a bundle £. In the case k = 1 it
is simply a covariant derivative.

In the present work we consider an arbitrary differential space (A/, #)
([5], [10]) instead of a manifold M and an arbitrary linear field module W
instead of the module of sections of a vector bundle £. Differential spaces
have been examined in the works by R. Sikorski ([11], [12]), W. Waliszewski
([18], [19]) as well as in the works by P. Walczak <[15]-[17]), K. Cegielka
([2], [3]), M. Pustelnik ([8]) and others. Linear field modules defined on
differential spaces were introduced by R. Sikorski ([11]).

In the present work we shall construct a linear field module </*(^T|"and
an exact sequence of jet-modules analogous to the sequence of jet-bundles
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and we shall prove the equivalence between the definition of a complete
differential as a certain differential operator of order k and as a splitting of
the jet-module sequence. The construction of the module Jk(if/~) will be
possible under certain assumptions about the module # ' ; the exactness of
the jet-module sequence will occur in certain conditions. These assumptions
and conditions will be examined more precisely for a class of pseudo-
differential modules, which contains differential modules ([11], [12]) and
modules of vector fields on a differential space of the class r/0 ([16], [17]}. K.
Cegielka in [2] showed that if a linear field module if1 on a differential space
(M, f(>) is differential and if it is possible to subordinate a smooth partition of
unity to every open covering of the space (M, T^}, then there exists in # a
scalar product, and so a covariant derivative also exists. It turns out that the
existence of a scalar product does not imply the existence of a local basis in
the module under consideration. An adequate example will be given at the
end of section 3.

1. Preliminaries. Differential spaces discussed in this paper as well as
the notions of a tangent vector, tangent space, smooth mapping, tangent
mapping, smooth vector field and the denotations T# and eftA have been
adopted from the works by R. Sikorski [10], [12]. A %-module of smooth
vector fields on a differential space (M, f6) will be denoted by ,#'(M, f6) and
the vector subspace of the tangent space (M, ^)p, peM, consisting of these
vectors which are values of a smooth vector field will be denoted by (M, '<$)£.

In a differential space (M, '(>} whose topology is paracompact and
locally compact, for any open covering there exists a smooth partition of
unity subordinated to this covering; this fact has been proved by K. CegieJka
([2]), M. Pustelnik in [8] proved that the assumption of local compactness
may be replaced by %-normality. It is easy to show that the assumptions of
Y,-normality is weaker than that of local compactness (assuming paracom-
pactness) and equivalent to the existence of a smooth partition of unity
subordinate to an arbitrary open covering.

1.1. Differential spaces of class V0. The existence and specification of
the widest class of differential spaces in which the theorem on a dif-
feomorphism holds was a problem raised by Waliszewski and solved by
Walczak in his paper [16]. Paper [17] was devoted to the investigation of
that class.

THEOREM 1.1.1. // (M, rf>) is a differential space of class (/0, then the set
M' of all points peM for W/I/C/L.

• fis open and dense in topoloyy r%.

Proof . The openness of M' is evident from the definition of this set. For
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a non-negative integer n, let Mn be the set of all points peAf for which
dim(M, f6)p = n. It is easy to see that

M' = U Int MH.
n

To prove that M' = M we shall show that every point peM has a
neighbourhood C/ertf such that

(1.1.1) U cM'nC/.

We take a set U covering p such that dim(M, (6\ dim(M, <6\r
qell. Obviously, if n = dim(Af, ff,\, then

Af 'nl / = U ((Int Mk) n (7) = lnt(MknU).
k=0 k=0

Let X* = (Mkn(/)\Int(Af f cri lO, * = 0, 1, ..., H. Since
V'

l / \ (M;nl/)= U A,
*=0

to show inclusion (1.1.1) it suffices to prove the equality

(1.1.21 In t (U Ak) = 0t r = 0, !,..., it.
fc=0

We apply induction on r. Since M0nU is open, equality (1.1.2) is satisfied
for r = 0. Assume that (1.1.2) is satisfied for an integer r < n. From the
openness of the set U n(M0 u... uA/r) and the equality >lr+1 n
n (M0 u . . . u M,) n (7 = 0 results

r + l r

Int( (J ,4fc) = (Int U ^)ulnt ^ r+J =0. q.e.d.
*=o *=o

The above theorem states that, in general, there are "many" vector fields
in a differential space of class <?Q.

1.2. Examples of differential spaces.

1.2.1. Let M and N be manifolds of class Cx and let/: M -> N; denote
by .^~(M) and .^"(N) the rings of smooth functions on M and AT; then the
differential spaces (/[M], ^(N)nMl) and (T1 [>}], .^(M),.^), where
aeN are not in general submanifolds.

1.2.Z The differential space (M x N, 3~(M) x #~(N)) ([13]) is not a mani-
fold if M and N are manifolds with a boundary.

1.23. Let N* N' be submanifolds of M. The differential spaces
(NnN'9 ^(M)N^) and (Nu/V', ^(M)WuJv.) need not be submanifolds.

1.2.4. On a manifold M, an arbitrary collection of vector fields
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X t , . ,., Xk defines several subspaces of the space (M, 3~(M)) of the form
(A, ^(M)^), where, for example,

(a) A = {psM' ^1(p) = ... = Xk(p) = 0},
(b) A = jpeM; the vectors Xt(p), ..., Xfc(p) are lineary independent].

1.2.5. Let K be a solid in R" A differential space (K, C* (R\) and the
/c-dimensional skeletons of this solid with the differential structure induced
from R" need not be manifolds. However, the solid may be a union (in the
sense of example 3) of manifolds with a boundary.

1.2.6. Let (M, g) be a Riemannian manifold. Let us fix point peM and
denote by C(p) the set of vectors veMp for which the differential (d Expp)y is
not an isomorphism. The corresponding differential subspaces C(p) and
Expp[C(p)] of the spaces Mp and M need not be submanifolds.

1.2.7. We define a structure % on the set R of real numbers by the
formula

ft =(SCC0)R, where C0 = (,K3n-»|r-s|eR; s e K j .

Then dim(R, C), = 2 and dim(R, C)'t = 0 for any point t eR.
The spaces in examples 1-6 are obviously of class C^0, while in the last

example the space (R, ft) is not of class ^0, according to Theorem 1.1.1.
13. Linear field modules.

DEFINITION 1.3.1. A linear field module is a triple iff" = ((M, ft'), $, #"),
where (M, ft) is a differential space, <P is a function assigning vector spaces
<P(p) to points peM and W is a certain ft -module of linear ^-fields
satisfying the condition:

If W is a linear <J>-field such that for any point p<=M there exist , a
neighbourhood U er^ of this point and a field Fei# such that W\U = V\U,
then We*'.

A module # satisfying the last condition is said to be closed with
respect to localization.

We shall denote by 0-#-(p) the vector space consisting of vectors ve<P(p)
which are the values of fields from the module H .

Suppose that with every point peM there is associated a linear mapping
L(p)'- &* (p) -+ ¥1 (p) satisfying the condition

1 for

then L is called a homomorphism of the linear field module ((M, ft), 0, T01')
into the linear field module ((M, ft), f, *'"). Then L: # -» Y " is a homo-
morphism of ft -modules.

A homomorphism of ft' -modules L: H ; ' -» / induces a homomorphism
of linear field modules if and only if it satisfies the following condition:

if We#' and W(p) = 0, then L(HO(p) = 0;
if i and W are modules of 0 and 0-linear fields on a differential
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space (A/, ft), then we denote by L*5(/", W~) the module of all linear V-fields
L, where IP (p) =/£(*,• (p); 0*-(P)). peM, such that L(K t , . .., KJe # ' for
Kj, ..., ^ e Y \e module L(TT, ft) will be denoted by / "*.

An example of a differential space (M, ft), a linear field module ^ and
a ft-linear mapping from .f (M, ft) into W which is not a linear V-field will
be given at the end of section 3. However, if every vector field Ve.#'(M, ft)

n

equal 0 at p is of the form V = £ /' H< ^or some functions/'eft such that

/'(P) = 0 and fields H^e#"(M, ft), / = 1, . . . ,«, then every ft-multilinear map-
ping from the module 3C(M, ft) into if is a linear V-field.

1.4. Pseudo-differential modules.

DEFINITION 1.4.1. A linear field module ((A/, ft), 0, 1̂ ") is called a
pseudo-differential module if for any point g e A/ there exist a neighbourhood

of this point and a differential module ((t/, ft^), V, y") such that
: f(p) for pet/ and

(1.4.1) if K e y " and K(p)e#w-(p) for any point pet/, then VeWv.

Differential modules and modules of smooth vector fields on a differ-
ential space of class 90 are examples of pseudo-differential modules, Basic
properties of pseudo-differential modules are given underneath:

THEOREM 1.4.1. //((A/, ft), tf>, it) is a pseudo-differential module, then:

(1) ¥V*(p) = (^*-(p))*> where f(p) = (^^(p))*, peM; i.e. for any linear
mapping T: tf>#(p)-»,R r/iere exis/5 a field heif* such that /*(p) = t;

(2) i/ W W a <Pyr-linear field such that for any field he it'"* the function
hoW belongs to the ring ft, then We it ;

(3) f/i/s tnodule is reflexive, i.e. the mapping Hw\ #"** defined by
the formula H*r(W) = (it^Bht-thoWeW), WeW, is a linear field module
isomorphism.

R e m a r k . Actually, it will be proved that the relations 1 =>(2<=>3) hold
for any linear field modules.

(a) (1 A 2) =>3. It suffices to prove that ker H* = 0 and im H*- = if'**.
If //* (W) - 0 for a certain field We H\n h(p)(W(p)} = 0 for every field
heit'*. From condition (1) follows the equality W(p) = 0. Now consider a
field Leif'**. From assumption (1) it follows that for any point peM there is
exactly one element vc$*-(p) sucri tnat ^(p)(T) = r(y) for Tef#*(p). This
defines a certain linear $*-field W for which fto ̂  = (M3p\-^h(p)(W(p)))
= (Mapi->Z,(p)(/i(p))) = L(/i)eft for every field / ie^"*. From the assump-
tion (2) it follows that We it'.

(b) (1 A 3)=>2. If W is an arbitrary linear #^-field such that hoWeV
for any field heit*, then (if '*9/?H-»/io We<6)e H '**. Hence there exists
exactly one field M^'eT^" such that hoW = hoWf for any field heit'*. In
view of condition (1) we have the equality W — W'.
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Proof of the theorem. Obviously, it suffices to check that a pseudo-
differential module fulfils conditions (1) and (2). Let us take a point qtM, a
neighbourhood C/6T% of q and a differential module ((L/, (6V), 0, 1 ) such
that $(p}<^0(p) for pel/ and condition (1.4.2) is fulfilled.

(1) Let T: 4v(t/)-»R be an arbitrary linear mapping and let Q: ([(q)
-» R be a certain linear extension of it. Let us take an arbitrary field Fe 1 '•'*
such that F(q) — Q. Obviously, the field F' = F|<2v defined by the formula
(F|0*) (p) = F(p)|0w (p), pe (/, is an element of the module (if^u)* ar»d nas tne

property: F'(q) = i. Taking into account the ^-regularity of the space
(M, i<g) ([14]), we see that condition (1) is fulfilled.

(2) Let W be an arbitrary linear #^ -field such that hoWef6 for any
field h<=W*. In particular, Fo(W\U) = F|<f>* -o(W\U)e<6 for any field
Fef*. Therefore W\U e i'\d further, from assumption (1.4.1), it follows
that W\Ue-Wv, Hence WeW. q.e.d.

1.5. Examples of linear field modules.

15.1. Let 5 and rj be vector bundles over manifolds Af and N, respec-
tively, and left a: £->rj be a morphism of vector bundles, i.e. a smooth
mapping such that ap = a|cp: £p -nif{f}, p e M is a linear mapping, where
/: Af-*N. Let V/ be a submodule of the module C x (c) consisting of
sections <r for which a(p)eker ap, peM, and i' a submodule of C *(/*?;)
consisting of fields a for which <r(p)eap[cp], peM- The linear field modules

(M, (Mapt-^ker ap), # ), (M, (

are not, in general, differential modules (i.e. \J ker ap and \ im ap generally
peM peM

are noj subbundles of ^ and/*»j, respectively).

1.5.2. Let c and r\e vector bundles over a manifold M and * a
differential operator of order k from the bundle c into rj. Following Spencer
([13], [14]), we denote by </> the corresponding morphism of the vector
bundle Jk(<;) into rj, by P,(<p) its /-th extension Pt((f>): Jk+l(£) -* Jl(ri) and by
<r,(<p) the unique linear morphism OI(<P}: Sk+t T* ®c -» S1 T* ® ^, / ̂  0, such
that the following diagram is commutative:

0 0

* w *

1
J'W

I
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Let 04 + , = ker <7,((?) crS* + f T * ® c and Rk + l = ker />,(<?) c Jk + t(&. Adequate
linear field modules (constructed accordingly to the scheme from the former
example) with values in gk + l and Rk + h respectively, are not differential,
in general.

1.53. Let M be a manifold. An arbitrary collection of smooth vector
fields Xi, ..., Xk defines a linear field module in which $(p), peM, is the
vector space spanned by the vectors Xl(p)t ..., Xk(p).

1.5.4. Let us consider a curve/: (a, b) -» R" of class C* and at every.
point pe(a, b) the osculating space of order k to /in the sense of E. Cartan
([!]), i.e. the plane in /?" spanned by the points: /(p), /(p)+/'(p),
f(p)+f"(p)> •••»/(P)+/ (* )(P)- Let us produce a linear field module in which
#(p), pe(a, />), will be the osculating space of order k to the curve / and
all mappings V: (a, b) -> R" of class CT , such that K(p)etf>(p), pe(a, />), will
form a linear 0-field module. The generated linear field module need not
be differential. A generalization of the above definition of the osculating
space to a curve in the case of a realization / of a manifold M in the
space R",f: M -> R", was given by W. Pohl •([?]). Proceeding as above, we
can again define a linear field module which, in general is not differential.

2. Ideals /J*»(M, V).

DEFINITION 2.1. For an arbitrary differential space (M, ff>) and a point
peM we define by. induction the sets ^(M, %), keN, in the following way:

(a) I(pl*(M; <6) = /P(M, %} equals the set of functions /e^ for which /(p)
-0;

(b) /e/ik+1)(M, %) if and only if/e/J, fc)(M, «) and for any collection of
vector fields X l 9 ..., Xfce^"(M, r^) the equality

holds.
Note that:

(2.1) The sets 7}*>(Af, «-), fceN, are ideals in the ring «,

(2.2) If /6 /»+ 1 ) (Af, «), l ^ r ^ f c , X j , . . . , X re^(M, tf), then

(2.3) [((/<;'(Af, «)r]M

As a rule, inclusion (2.3) cannot be replaced by an equality.
EXAMPLE 2.1. Let A c R2 be the set of points (x, y) for which x = 0 or

y = 0 and let D — C* (R2)A. Obviously, the dimension of the space (A, D)(0t0}

is equal 2; moreover, since every smooth vector field on (A, D) is equal 0 at
the point (0, 0), the dimension of the space (A, O)[0<0) is equal 0.
Consequently lf(A, D) = I(pl)(A, D) for k^i. There exists a function
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, *>) such that (da)(0 0) * 0; so ^((^(A, D))2)A and also

THEOREM 2.1. For any differential space (M, <#), any poinf peM and any
positive integer k there exists exactly one linear mapping

such that for vector fields Xlt ..., Xke#"(M, *#) and /unctions /e/J,k)(M>
rhe equality

fco/ds. Moreover, the sequence

,(fc>
(2.4) 0 - /J+ l)(M , <f) <=> /(p*>(M, <tf) -*U Lks((M, <*);, R) - 0

is exact if dim(M, y>)'p < oo.
Proof. The existence of the mapping dJJ0, its uniqueness and linearity

may be checked just as in the case when (M, <6) is a manifold ([6]). To prove
the exactness of the sequence (2.4) it suffices to show the surjectivity of the
mapping dj,k) in the case when dim(M, ^);>0. Let a: ®k((M, f6)'p)*
->-l!f((M, r6)'p, R) be the natural linear isomorphism. Let us fix a basis
i>!, ..., vn of the space (M, ft>}'p and take arbitrary vector fields
A\ ..., Xke-f (M, %) such that Xt(p) = vt, i = 1, .... n. There exist functions
ft, ...,ft,ev; such that ft(p)«0 and X((ft) = Sy, i . j ^ n ([12]). An
arbitrary element T of the space ®k((M, f6)'p)* is of the form

with uniquely determined numbers a( ..... ike^- a*T) is a symmetric mapping if
and only if the matrix

is symmetric.
Let now a(t) be an arbitrary element of the space /*S((M, *#)£, R). Let

where the number a(0l a^ is equal e^ ; for the sequence i ' i , . . . , ik

constructed in the following way: at the beginning the number 1 appears oti
times, then the number 2 is repeated az times etc., the number n occurs an
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times. It is clear that for a sequence «i, ..., <*'„ such that ai + ... +«i = /c and

j'l times nj, times

q.e.d.

There exists a differential space (M, C6) and a point peM at which
dim(M, ^)p = x and dim(M, ̂  < oo.

EXAMPLE 2.2. Let (^, D) be a differential space from Example 2.1. Let
us take (M, -K) - X M- Dm)' where (^- D«) = ̂ > D)' « = U 2, ..., and a

meN

point peM such that prn(p) = (0, 0). It can be proved that dim(M, %)p = oo
and dim(M, ^); = 0.

LEMMA 2.1. If functions /', ...,/" belong to the ideal I(p*(M, %} and
9i* *-i9n <*re arbitrary functions of class ^, then

Proof. The proof will be inductive on k. By the linearity of df}

it suffices to prove the equality for n = 1. Let feI(®(M, ff>) and gt'f>. When
k = 1 the proof is evident. Let k > 1,

, ..., Xk.1)(f(Xtg))](p)
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pK - - . , Xk(p)). q.e.d.

3. Modules of jets. An exact sequence of jet-modules.

3.1. Opening remarks. For an arbitrary linear field module ii
= ((Af, *#),#, ^ ) we snaN '°°k f°r tne possibly weakest conditions under
which a linear field module Jk(^/"), called the module of jets of order k of the
module it \ be rationally defined.

The notion of jet appeared in Ch. Ehresmann's work [4]. In the same
series of articles we can find also the notion of a holonomic extension of
order k of a bundle £. In the case of linear bundles this notion was
introduced in a way different but equivalent and more useful for us by R.
Palais ([16]) in the course of presenting the theory of differential operators.

The definition of the jet field module Jk(* '} in the case of a linear field
module is a generalization of this construction.

3.2. Definition of a complete differential of higher order in a linear field
module. Examples.

DEFINITION 3.2.1. A complete differential of order k in a linear <&-field
module if over a differential space (M, ^) is defined as an K-linear mapping

satisfying the condition :

(3.2.1) (Dk(f-W))(p)

for fields We1J\s peM and functions fe % such that

For k — 1 we have the ordinary definition of a covariant derivative. We
shall further denote (&W)(p) by D$(W).

EXAMPLE 3.2,1'. A fundamental example of a complete differential of
order k is the mapping

define by the formula

(<*"/)(*!,...,Xk)(p)= X X , ( p ) ( p r i } ) - , . . - )

for A\ ..., Xk smooth vector fields on Rn and pr^: Rn -> R, j = 1, ..., n, the
natural projections.

Thus, in order to evaluate ( d k f } ( X l ^ . . . , Xk)(p), the vectors
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X2(p), ..., Xk(p) should be extended to vector fields Y2, ..., Yk, constant
with respect to the natural covariant derivative in the module tf(Rn, CJ (/?"))
and the following quantity should be computed:

EXAMPLE 3.2.2. Let us consider a vector bundle c, over a manifold A/, a
covariant derivative V in the tangent bundle TM with vanishing curvature
tensor and a covariant derivative P in f such that, whenever X and F are V-
constant fields defined on an open set U c: M, the curvature tensor of P
satisfies

<r being any section of £ over t/. For vector field X on the manifold M and a
point peM we denote by Xp the P-constant field defined in a certain
neighbourhood of p such that AT(p) = Xp(p). Let

The operator D defined in this way is a complete differential of order k.

33. The modules Z(ki(if) and Z*(#0. Let us consider a certain vector
bundle c, over a manifold M. R. Palais [6] has defined, for an arbitrary point
peM and an integer k ^ 0, a submodule Zk(£,) of C*(£) (the module of
global sections of £) to be equal /J(Af)C* (£). It corresponds to these global
sections whose holonomic /c-jet at p (in the terminology of Ehresmann) is
equal to 0. If Dk is a complete differential of order k in the module C'' (<;},
then Z k ( ( ) consists of these sections ffeZk~l(£) for which Dk(a) = 0.

DEFINITION 3.3.1. Assume, for an arbitrary linear field module if
= ((M, %), #, if) and a point peM, that

(a) Zjk)C#") = /{*+1)(M, «)*", fc = 0, 1, 2, ...

(b) Zp°()r)'=40)(^) and Zj(#), * = 1, 2, ..., »s equal to the sub-
module of "#' containing these and only these fields WeZ(k~1}(if) which

n

can be written in the form W = £ f* Wi9 /S ...,/"e/^(Af, V!),

Jfi, ..., l^e^, such that
n

i= 1

The modules Z(k}(if) and Z^(^) are closed with respect to localization.
It is easy to see that if Dk is a complete differential of order k in a linear field
module ((M, f6], #, ^T), then Z£(#) contains those and only those fields
WeZ(k~1)(W) for which Dk(W) = 0. For an arbitrary open set C/er^ the
following equalities hold:
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(3.3.D
The inclusion

(3.3.2)

cannot, in general, be replaced by an equality.

EXAMPLE 3.3.1. Consider a differential space (/?, CX(JJ)), a positive
integer r and an assignement 4> defined by the formula:

, P * o.

Let us include into the module # those and only those fields (/*, ...,/r) for
which/1, ...Jr~leC*(R) and / re/0(K). Clearly,

S{(/1, ..../•): A .....TelS*1] = Zk0

If the manifold M has a positive dimensions, then for any natural
number k we have

In general, the equality on the right does not hold in pseudo-differential
modules (Example 3.3.1) but it holds in differential modules.

THEOREM 3.3.1. // a linear field module ((M, r(>\. 4>. if') is a differential
module, then Z™(1T) = Z*(iT), keN, peM.

•
Proof. Every field WeZkp(i1') is of the form X /' ' ̂  with functions

i= 1
n

/'e/j,k)(M, V), i = 1, ..., N, satisfying the condition £ 4*' /' ® ̂  (/>) = 0-
i= 1

There exist a neighbourhood t/ of p and fields Kj. . . . t K r e # such that the
fields Kj|t/, ..., ̂ |L/ are a vector basis for the module tf"^ and H<|L7

/^) l^> ' — 1» • • • ' "' f°r certain functions /,{ef6. Thus by Lemma 2.1

0=

j-l

From the fact that the vectors V1(p], ..., V,(p) are linearly independent we
n

obtain the equalities d(k}(^ /'A/) = 0,J= 1, . . . , r , and from Theorem 2.1
i= 1
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we get the relation <P> = £ /''//e/<,k+1)(M, fc),y = 1, ..., r. Thus
i= 1

Z *"'*5)|t/, which means that WeZ^iT). q.e.d.
i = i j=i

THEOREM 3.3.2. // a differential space (M , f€) is of class &Q and if
we have (M, f6)p = (M, f6)'p at a point peM, then Z(pfc)(^(M, <£))
= Z*(#"(M, ^)), keN. Consequently the set of points peM for which the two
modules are equal is dense in t% and covers the set M'.

Proof. From Theorem 1.1.1 follows the existence of a neighbourhood
U of p such that, for any qeU, dim(M, f$\ dim(M, <#)p and (M , ̂
= (M, %)q. Therefore the module ^(U, f6v) is differential. From the
preceding theorem follows the equality

It is easy to prove the present theorem applying equalities (3.3.1). q.e.d.

3.4. The mapping d(£] for linear field modules. Condition *k). In ( | _ 6 J )
R. Palais has proved the existence and uniqueness of an ^-linear mapping
dkp: Zj-^C^tOj-^AfWp.y, fcSsl, such that if WeZ^1^^) and
/ieCx(^*), then

(3.4.1)

Note that hoWe!kp(M). If WeZf~l(C*(Q) and W = £ /' WJ, where

/'e/J(Afl, / = !,...,«, then

(3.4.2)

Indeed, let us consider a field /ieCx(^*) and vectors vlt ..., vkeMp. From
Lemma 2.1 follows

i= 1
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Applying the formula analogous to (3.4.2) we define the mapping d(p} for
linear field modules. Let ((M, #), <£, W) be a linear field module.

DEFINITION 3.4.1. We denote by d(£\, fceN, an R-linear mapping

such that d£}(f-W) = J£>f®W(p) for /e/J,k)(M, «), We iT.

THEOREM 3.4.1. ,4 mapping (f*} exists if and only if the following condition
is satisfied:

n

*k) '/ I /*WJ=0, w/iertf/'e/^fA^'), Wtei^,i= 1, . . . ,n ,neJV, rten
1=1

T/iere exisfs af mosr one mapping df}.
n

Proof. If dj? exists and if £ /•' W{ = 0 for/'e/J^M, '<*), WfetfT, then
i= I

4k)/' ® W{(p) = X 4k)(/'' W = C( Z /* wi) = °- so lhat condition *k)

is satisfied. The existence and uniqueness of the mapping dj,*' under condition
*k) is a consequence of the property that any field WeZf **(i?) is of the

form X fi H^,/'e/^(M, ^), and that 4k)(W) = ^ <*'/' ® ̂ (P) does not
i = i i=i

depend on the representation of the field W in this form. Thus the last
formula defines the desired K-linear mapping, q.e.d.

It follows directly from the definition of a complete differential of order
k that if a complete differential exists in a linear field module, then condition
*k) is fulfilled at every point of the underlying space. Condition *k) need not
be satisfied in every linear field module. -

EXAMPLE 3.4.1. Consider a differential space (ft, Cn(JQ) and the
assignement $ defined as follows: <P(p) = 0 for p ¥= 0 and <P(Q) = K. Let 'W
be the module of the all linear ^-fields. For an arbitrary function /e/o\/o+1

and the field Weifr" equal 1 at the point 0 we have

/ •W = 0 and

Remark . Let ((M, (6), <£, if1'') be a linear field module. For arbitrary
fields WeZf~l}(in and htW* we have

h o W e I ( f } ( M , ' 6 ) and d£}(ho W) = h(p)odff}(W).

Proof. Assume that the field W is of the form
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For any vectors i?,, ..., vke(M, r6)'p

,...,vk). q.e.d.

Condition *k) is satisfied in a fairly broad class of linear field modules
(see Theorem 1.4.1).

THEOREM 3.4.2. Let ((M, •£), #, #'") be a linear field module. If this
module satisfies at a point p the conditions:

(a) dim #» (p) < oo,

(b) tfVfpM^V (/>))*> w/im> -F (<?)=(<*V (,?))*, <? eM,
then for keN

(A) r/iere exists exactly one R-linear mapping

satisfying the equality

(3.4.3) 4*»(/ioWO = /i(p)o4*1(W') /or WeZf-1}(if1 and

(B) r/ie module satisfies condition *k) ar r/ie po/nr p
Proof. Assume that conditions (a) and (b) are satisfied at a point peM.

For an arbitrarily fixed field WeZ(p~l)(ir) there exists the R-linear mapping
tFitra(p)3\v\-^d(p](hoW), where heW* and h(p) = w; and for any collection
of vectors u1 ? ..., vk from (M,f6)'p there exists exactly one element

(v^ ..,, ^)e^(p) such that

for he if*. The mapping

i

is symmetric and /c-Iinear; it defines a linear mapping

4": ZJT »(# ) -, Lks((M, «);, *,.(p)).
»

This is the only mapping which has property (3.4.3) and we have d(*} = dj,*1.
Now we show that condition *k) is fulfilled at the point peM. Let us
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consider any functions/1, ...,/"e/{,k)(M, <#) and fields Wlt ..., W^W such

that £ /' Wt = 0. For any field heW~* and vectors i?j, ..., u te(Af,
i = l

From assumption (a) and (b) follows

THEOREM 3.4.3. //a linear field module ((M, *£), #, W) satisfies at peM
following conditions:
(a) dim(M, «); < oo,
(b) dim <P*-(p) < oo,

(c) *k),
the following sequence is exact:

(3.4.4) 0-»

Proof. It suffices to show the surjectivity of the mapping d**} in the case
when dim $^(p) > 0. Let us take an arbitrary element reL* ((Af, f6)'p< #»(/>))
and a basis U j , ..., uk of the space *^(p). There exist elements t1, ..., tr

r

eL*((M, r^)J,, K) such that t = ^ T''®U,.. From Theorem 2.1 we conclude
i= 1

that there exist functions f1, ...,/pe/(*)(Af» ^) such that ft^f* = i1',
i = 1, ..., r For any fields W^, ..., Wreit' such that W^(p) = u,, i = 1, ..., r,

the equality ^pk)(Z /' ̂ ) — T ls satisfied, q.e.d.
i= 1

In what follows we assume that all linear field modules under
consideration satisfy the assumptions of the last theorem.

From the definition of the mapping dff} follows the equality:
= kerrf*J°. Therefore there exists a linear isomorphism

Qkp: Z'

with the property £(W+Z%(i?)) = te®(W) for WeZf~ "(*'). The inverse

mapping
isomorphism will be denoted by ij; it will be considered as an injective linear
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Since Zp(i^) <= Zj~l*000» there exists the canonical surjective linear
mapping

with the kernel Z{k~l)(iniZk(in (equal to im /*). Hence the following
sequence is exact:

0.4.5) o-*

DEFINITION 3.4.2. Consider an arbitrary non-negative number /c, a linear
field module ((M, %), 0, ^7) and a point peM. Denote by

and yj

the canonical linear mappings. The spaces

jJ(Tfr) = HT/Z*(ir) and

will be called the jef spaces, of order fc and (/c), respectively, at the point p.

For any field WeZ(k~l}(in

(3.4.6)

Indeed, ikp(t?(W)) = ̂

LEMMA 3.4.1. // />* is a complete differential of order k in a linear field
module ((M, *£), 0, T^ ), then for any point peM there exists exactly one R-
linear mapping

T •V -

such that Dp = Tpojk. It will be called the mapping linearizing the complete
differential />* at the point p. It satisfies the condition: 7^o/* = id.

Proof. If there exists a mapping linearizing the complete differential />*
at a point p, then it is defined by the formula

(3.4.7) Tp(jk(W)} = Dkp(W)\e there exists at most one such mapping.

Consider the mapping Tp defined by formula (3.4.7). The formula defines
the mapping Tp correctly because if jp(W) = /J(W), then (\V—W)€Zk(i^),
which implies Dkp(W- W) = 0. The equality Tpoik = id follows from Dkp(W)

To conclude this subsection we prove one more important fact.

THEOREM 3.4.4. If Dk is a complete differential of order k in a linear field
module ((M, ^), 0, W) and Tp is the mapping linearizing D^ at a point p, then

ker rk'(k~nnkcr 7^ = 0.

2 - Annafes Pokmici Mathcmatici XLIV. 2
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Proof. Let us consider any field WeW such that

Tp.

Then W^Z(k~ l>(iT) and so W = £ /* W{ for certain functions
i= 1

/\k>(M, «) and fields Wi, ..., W^elT. Besides,

0 = TP$(W)) = Dk(W) = DJ

hence WeZjf^") and consequently ;'£(HO = 0. q.e.d.

35. Jet field module of order k and (k). An exact sequence of jet-modules.

DEFINITION 3.5.1. (a) The (fe)-order jet field module, k = 0, 1, ..., of a
linear field module ((M, %\, IT) is the least linear (Mapi-^'^D-field
module closed with respect to localization, containing all fields of the form:

for

(b) The fc-order jet field module, k = 0, 1, 2, . . ., of a linear field module
((M, tf), 0, H") is the least (M a ph->jj(^ Afield module closed with respect
to localization, containing all fields of the form:

(i) M3p^fp(W)eJ*(ir} for

(ii) M3p^iJ(Sp)6Jj(Tr) for

- I t is clear that for any jet fields S of order k the field
(M3p^nJp'(k~l)(Sp)) is a jet field of order (k — 1). Moreover, the mappings
f : U,(sr(M, <£), Tr)-*J*(TT) and r*-**'1': J*(^")-^ J<k~ l )(*0 defined by
the formula ik(L)(p) = i*(Lp) for LeL*s(.T(M, •»), iT) and peM,
rM*~1)(L)(p) = rJ-(k-1)(Lp) for LeJ*(TT) and peM, are homomorphisms of
linear field modules. The following natural mappings are K-linear,

/: W-^Jk(iT} and j(k}: W ->J(k)(iT)'

Notice also that j°: if -> J°(nn is a ^-linear mapping.
In the sequel of this section we shall examine the sequence

(3.5.1)

called the jet-module sequence.

THEOREM 3.5.1. // a differential space (M, *#) is paracompact and C-
normal then the mapping r*1**"11 in sequence (3.5.1) is a surjection.

Proof. Let us consider an arbitrary field WeJ{k~l}(ifr). For any point
p e M there exists a neighbourhood Up e TV of p such that W\p

n

«(J] /*/* ^WJjjU* for a certain positive integer n, functions /''e^ and
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fields W' 'e H , i = 1, 2, ..., n. According to paracompactness, we subordinate
a locally finite family (V^ teT) to the family (Up, peM), and applying #-
normality we choose a smooth partition of unity (<p,),67- subordinate to this

n

covering. We define fields OteJk(#'\ by the formula 0, = £ fijk(Wi)
i = l

and we put 9 = £ <pt0t. Obviously 0eJ*(iT), and since r$**~l}(et(p)) - W(p)
teT

for p eK , we have rM f c~u(^) = W. q.e.d.
The exactness of sequence (3.5.1) at the term "Jk(Wy in the case k = 1

will be proved without additional assumptions about the module H . In the
general case it will be proved for a broad class of linear field modules
containing pseudo-differential modules.

To show exactness let us consider an arbitrary field Seker /•*•<*" ll and
notice that there exists exactly one field L such that iJ(Lp) = Sp for any point
peM. We shall check that LeL*s(,^(M, «'), W\m the definition of the
module Jk(W) it follows that in a certain neighbourhood V of pe M the field
S is of the form

S|l/=i*(L)|t/ + (t fjjk(Wj))\U
/=!

for some field Le£M(9?(M, f&), i^), a positive integer n, functions
/\ne^ and fields Wi, ..., WHei^\e for any point qeU,

-£-*»( /'<«) Hi),
J = l

then /%)We2-
7=1

From equality (3.4.6) one can easily derive the equality

;= i

As ij is an injection, we have

(3.5.2) Lq = Lq + d ? ( Z f j ( q ) W j ) for
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To prove exactness it suffices to show that

7 = 1

for Klf..., Vke&(U,<ev).

THEOREM 3.5.2. The sequence

0 -» L(£'(M, «), TT) -^ J1 (IT) ̂  J°(1T)

is exocr.
n

Proof. Since £ /Jfa)H}e2j(ir) for qel/, then in particular
j-i

(Z/J^)|L/ = 0, and so f (/J-/j(g))^eZ«(^l. Hence
;= i ;= i

and this produces the equalities:

j= 1 J= 1

THEOREM 3.5.3. // a linear field module ((M, ^), 0, ^T) satisfies
condition:

whenewer W is a linear <P^-field such that, for any field heW*, the
function hoW is from the ring <6\

then the sequence

is exact.
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Proof. We shall show that every point peV has a neighbourhood
V c: V such that

for Vi, . .., K t6,-r(K, «K).
Let us consider a function ye# separating the point p in the set [7, i.e. a

function y such that y\B0 = 1 for some neighbourhood B0 of p and y\Ul) = Q
for an open set C/0 such that 17 0 u U = M. Obviously,

for any <?eM. We put V = B0. Then for qeV we have

4fc)(r X /'towa->=i
It suffices to show that

(3.5.3) (M34i-N?(r.i
j= i

For an arbitrary field heW* it follows from Theorem 3.4.2 that

JJtKato), ..., Vk(q))

. q.e.d.

Now we present the announced example of a linear field module
((Af, #), *, T#") for which there exists a ^-linear mapping L: .iT(Af, ^)*-» ^"
which is not a linear "F-field for "P = (M 9^i-*L((M, «);, 0W (/?))).
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EXAMPLE 3.5.1. Consider the differential space

This space is of class ®0. Let exe(R, C* (R))x for x ̂  0 be unitary vector, i.e.
such that ex(idR) — 1. The tangent space (R, ^)0 is 2-dimensional, having as a
basis the vectors e0 and co defined by the formulas:

e0(idR) = 1, e0(|-|) = 0; w(idR) = 0, t»(|- |) = 1.

The vector field V = (R^x\-^xexe(R, f6)x) is smooth because V(idR)
•

= idR and K(|- | ) = |* . It cannot be written in the form £ flWt for any
i= 1

numbers neN, functions /l, ...JneI\}>(R, <€) and fields Wl9...,Wm

e #"(/*, <€). Every vector field Wc&(R, <g) is equal 0 at the point 0 and so,

if K = £/ f "W{ for functions /* with /'(p) = 0, i= 1, ...,«, then K(idR)

= X /'^('^K)- ^e tnus would get the equality idR = J] /'^ for certain
i = l i = l

functions /', &, i = 1, ..., n, from the ideal /0(K, "tf), and this produces
a contradiction:

Now take a jet field module of order 0 of the initial module and a #-
linear mapping/: #(K, «) -> J0(^r(M, (^)).)° is not a linear f-field because
for the vector field V we have

K(0) = 0 and 7°(K)(0) =;g(K) ^ 0.

A scalar product in a linear field module ((M, #), *, ^) is a linear field
Ge&t(W9<%) such that G(p)(y, u) > 0 for 0^ue0^(p) and G*: W-^W*
defined by the formula G*(V)(W) = G(V, W) is an isomorphism of linear
field modules.

EXAMPLE 3.5.2. In the space (R, %) from the preceding example every
smooth vector field is of the form/-e, where /e^ is a function such that
/(O) = 0. Every linear field keif™ is of the form f-e*t where /: R -* R is a
function such that /(O) = 0,/-idRe^ and/- | - |e^ . The function/ defined
by the formula /(x) = 1 when x / 0 and/(0) = 0 can serve as example. We
shall construct a scalar product G in the module £(R, <€}. We put
G(x)(ex, ex) = l/x for x ^ 0 and, of course, G(0) = 0. As every function/ e#
equal 0 at the point 0 is of the form/(x) = x-/!(x) + |x| -/2(x), xeR, where
/i,/2e^, we see that G(K, W)e<6 for V, Wefr(R, <$). Let us take the vector
field V=f-idR-e for any field fceTT* of the form/-e*. Then
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and G(V, W) = h(W). It is clear that the form G(x), xeR, is positive, and so
G is a scalar product.

In the module ^(R, %) there exists a symmetric covariant derivative
determined by the scalar product just constructed. Notice that if/, ge% and
/(O) = g(0) = 0, then the function g is differentiate except at zero and the
function h defined by the formula

h(x) = f ( x ) g ' ( x ) for x ^ 0 and /i(0) = 0

is from the ring #. It is easy to prove that the following formula defines the
generated covariant derivative:

x ^ 0, w \_ J \J v o y / v— — n / / \ — / - x > •* 7- v;
CM-*J — i rt x = 0

4. Complete differentials of higher order in relation to splittings of a
sequence of jet-modules.

DEFINITION 4.1. A splitting of the exact sequence of jet-modules

0-*J

(also a connection in the case k = 1) is an assignment

satisfying the conditions:
(i) yp is a linear subspace of the space

(ii) Jj(*1 = ^p©ker ^(k~l\,
(iii) if Pp: Jj(#') ->ker rj1'*"1' is the projection defined by the above

direct sum then for Se •/*(#") the field

belongs to the module Jk(it/).

THEOREM 4.1. ///)* is a complete differential of order k in a linear field
module ((M, <#), *, if") and Tp is a mapping linearizing this differential at a
point peM, then the assignment Mapi— >ker Tp is a splitting of the exact jet -
module sequence of order k.

Proof. Theorem 3.4.4 states that ker 7^r>ker r^1'*"1' = 0. For any s\e-
ment j*(WOeJjm, We^ we have fp (W) = i

and /J(Dj(W))6ker r^"1* and, by Lemma 3.4.1, T p / J ( - /
= ~Dp(W) + Dkp(W) = Q; thus condition (ii) is fulfilled. Now con-

sider an arbitrary field 5e Jk(T^/); in a certain neighbourhood U of p the field

S is of the form S\U = i*(t)|l/+( ̂  /7/(H^))|C/ for a certain field
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«), TiT), a number neN, functions /', ...,/"e« and fields
Wl WntiV. Hence

is an element of the module Jk(W)v. q.e.d.

THEOREM 4.2. // ($~p)peM is splitting of the exact jet-module sequence of
order k, then there exists exactly one homomorphism of linear field modules

T: Jk(TT)^Lks(.^(M, fc), H]
such that:

(i) ker 7p = -rp ,peM,
(ii) Toi* = id.
Moreover, To/ is a complete differential of order k in the module it".
Proof. Consider the projection Pp and the projection Rp: Jp(i^->-3~p

defined by the direct sum J*(T^) = ker rkp'(k~*} © 3~^ peM. Since
Pp(/*(H'))eker rp1"1"1' = im /J for WeH, there exists exactly one element
speL*5((M, f6)'p, *#-(p)) associated with We # such that Pp(/J(^0) = »*(sp).
Hence for We if'

This proves the uniqueness of the mapping Tp and gives the method of
computing it. Now it must be proved that

T(S) = (M3p^T,(Sp))e

for any field SeJ*(^"). As in the foregoing theorem, S will be given in the
n

form S\U = i*(i)|l/ + ( J] /J/(^-))|C/. Then

From the exactness of the jet-module sequence of order k follows the
existence of fields L^ j = 1, ..., n, from the spaces I?S(^(M, <#), if) such
that P / * ( W ) = i k ( ) . Hence
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It is easy to check that To/ is an K-linear mapping. Finally, i
/-/(p)Gjj*'(Af, «) and Weit\n from (3.4.6) we have

= Tpojkp((f-f(p)) W)+ Tpojkp(f(p) W)

(H/)
q.e.d.
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